Search and Game Playing

Overview

- Search problems: definition
- Example: 8-puzzle
- General search
- Evaluation of search strategies
- Strategies: breadth-first, uniform-cost, depth-first
- More uninformed search: depth-limited, iterative deepening, bidirectional search

Emacs Tips

- multiple windows in emacs (up/down): C-x 2
- multiple windows in emacs (left/right): C-x 3
- switch between buffers: C-x b
- reduce to one window: C-x 1
- navigation between windows in emacs: C-x o
- increasing height of window in emacs: C-x ^
- killing current window in emacs: C-x k

Search Problems: Definition

Search = < initial state, operators, goal states >

- Initial State: description of the current situation as given in a problem
- Operators: functions from any state to a set of successor (or neighbor) states
- Goal: subset of states, or test rule
Variants of Search Problems

Search = < state space, initial state, operators, goal states >

- State space: set of all possible states reachable from the current initial state through repeated application of the operators (i.e. path).

Search = < initial state, operators, goal states, path cost >

- Path cost: find the best solution, not just a solution. Cost can be many different things.

Types of Search

- Uninformed: systematic strategies (Chapter 3)
- Informed: Use domain knowledge to narrow search (Chapter 4)
- Game playing as search: minimax, state pruning, probabilistic games (Chapter 5).

Search State

State as Data Structure

- examples: variable assignment, properties, order in list, bitmap, graph (vertex and edges)
- captures all possible ways world could be
- typically static, discrete (symbolic), but does not have to be

Choosing a Good Representation

- concise (keep only the relevant features)
- explicit (easy to compute when needed)
- embeds constraints

Operators

Function from state to subset of states

- drive to neighboring city
- place piece on chess board
- add person to meeting schedule
- slide tile in 8-puzzle

Characteristics

- often requires instantiation (fill in variables)
- encode constraints (only certain operations are allowed)
- generally discrete: continuous parameters → infinite branching
Goals: Subset of states or test rules

Specification:
- set of states: enumerate the eligible states
- partial description: e.g. a certain variable has value over x.
- constraints: or set of constraints. Hard to enumerate all states matching the constraints, or very hard to come up with a solution at all (i.e. you can only verify it; P vs. NP).

Other considerations:
- space, time, quality (exact vs. approximate trade-offs)

An Example: 8-Puzzle

State: location of 8 number tiles and one blank tile

Operators: blank moves left, right, up, or down

Goal test: state matches the configuration on the right (see above)

Path cost: each step cost 1, i.e. path length, or search tree depth

Generalization: 15-puzzle, ..., $(N^2 - 1)$-puzzle

Possible state representations in LISP (0 is the blank):
- (0 2 3 1 8 4 7 6 5)
- ((0 2 3) (1 8 4) (7 6 5))
- ((0 1 7) (2 8 6) (3 4 5))
- or use the `make-array`, `aref` functions.

How easy to: (1) compare, (2) operate on, and (3) store (i.e. size).
Goal Test

As simple as a single LISP call:

* (defvar *goal-state* ’(1 2 3 8 0 4 7 6 5))
GOAL-STATE

* (equal *goal-state* ’(1 2 3 8 0 4 7 6 5))
T

General Search Algorithm

Pseudo-code:

function General-Search (problem, Que-Fn)
node-list := initial-state
loop begin
 // fail if node-list is empty
 if Empty(node-list) then return FAIL
 // pick a node from node-list
 node := Get-First-Node(node-list)
 // if picked node is a goal node, success!
 if (node == goal) then return as SOLUTION
 // otherwise, expand node and enqueue
 node-list := Que-Fn(node-list, Expand(node))
loop end

Evaluation of Search Strategies

- time-complexity: how many nodes expanded so far?
- space-complexity: how many nodes must be stored in node-list at any given time?
- completeness: if solution exists, guaranteed to be found?
- optimality: guaranteed to find the best solution?

Breadth First Search

- node visit order (goal test): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- queuing function: enqueue at end (add expanded node at the end of the list)
Evolution of the queue (bold = expanded and added children):
1. [1] : initial state
2. [2][3] : dequeue 1 and enqueue 2 and 3
3. [3][4][5] : dequeue 2 and enqueue 4 and 5
4. [4][5][6][7] : all depth 3 nodes
...
8. [8][9][10][11][12][13][14][15] : all depth 4 nodes

Uniform Cost

BFS with expansion of lowest-cost nodes: path cost is $g(node)$.
- BFS: $g(n) = \text{Depth}(node)$

Depth First Search

- node visit order (goal test): 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15
- queuing function: enqueue at left (stack push; add expanded node at the beginning of the list)

BFS: Evaluation

branching factor b, depth of solution d:
- complete: it will find the solution if it exists
- time: $1 + b + b^2 + \ldots + b^d$
- space: $O(b^{d+1})$ where d is the depth of the shallowest solution
- space is more problem than time in most cases (p 75, figure 3.12).
- time is also a major problem nonetheless (same as time)
Evolution of the queue (**bold**=expanded and added children):

1. \([1]\) : initial state
2. \([2][3]\) : pop 1 and push expanded in the front
3. \([4][5][3]\) : pop 2 and push expanded in the front
4. \([8][9][5][3]\) : pop 4 and push expanded in the front

DFS: Evaluation

branching factor \(b\), depth of solutions \(d\), max depth \(m\):

- incomplete: may wander down the wrong path
- time: \(O(b^m)\) nodes expanded (worst case)
- space: \(O(bm)\) (just along the current path)
- good when there are many shallow goals
- bad for deep or infinite depth state space

Implementation

- Use of stack or queue: explicit storage of expanded nodes
- Recursion: implicit storage in the recursive call stack

Key Points

- Description of a search problem: initial state, goals, operators, etc.
- Considerations in designing a representation for a state
- Evaluation criteria
- BFS, UCS, DFS: time and space complexity, completeness
- Differences and similarities between BFS and UCS
- When to use one vs. another
- Node visit orders for each strategy
- Tracking the stack or queue at any moment
Depth Limited Search (DLS): Limited Depth DFS

- node visit order for each depth limit l:
 1 ($l = 1$); 1 2 3 ($l = 2$); 1 2 4 5 6 7 ($l = 3$);
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: ($<\text{depth}> <\text{node}>$)

DLS: Expand Order

Evolution of the queue (bold=expanded and then added): ($<\text{depth}>, <\text{node}>$); Depth limit = 3
1. [(d1, 1)]: initial state
2. [(d2, 2)][(d2, 3)]: pop 1 and push 2 and 3
3. [(d3, 4)][(d3, 5)][(d2, 3)]: pop 2 and push 4 and 5
4. [(d3, 5)][(d2, 3)]: pop 4, cannot expand it further
5. [(d2, 3)]: pop 5, cannot expand it further
6. [(d3, 6)][(d3, 7)]: pop 3, and push 6, 7
...

DLS: Evaluation

branching factor b, depth limit l, depth of solution d:
- complete: if $l \geq d$
- time: $O(b^l)$ nodes expanded (worst case)
- space: $O(bl)$ (same as DFS, where $l = m$ (m: max depth of tree in DFS)
- good if solution is within the limited depth.
- non-optimal (same problem as in DFS).

Iterative Deepening Search: DLS by Increasing Limit

- node visit order:
 1 ; 1 2 3 ; 1 2 4 5 3 6 7 ; 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15 ; ...
- revisits already explored nodes at successive depth limit
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: ($<\text{depth}> <\text{node}>$)
IDS: Expand Order

```
1
 /|
/  \
2  3
 /|
/  \
4  5 6
   /|
   /  \
   7
```

Basically the same as DLS: Evolution of the queue (bold=expanded and then added): \((<\text{depth}>,<\text{node}>)\); e.g. Depth limit = 3

1. \([(d1,1)]\) : initial state
2. \([(d2,2)][(d2,3)]\) : pop 1 and push 2 and 3
3. \([(d3,4)][(d3,5)][(d2,3)]\) : pop 2 and push 4 and 5
4. \([(d3,5)][(d2,3)]\) : pop 4, cannot expand it further
5. \([(d2,3)]\) : pop 5, cannot expand it further
6. \([(d3,6)][(d3,7)]\) : pop 3, and push 6, 7

... 29

IDS: Evaluation

branching factor \(b\), depth of solution \(d\):

- complete: cf. DLS, which is conditionally complete
- time: \(O(b^d)\) nodes expanded (worst case)
- space: \(O(bd)\) (cf. DFS and DLS)
- optimal!: unlike DFS or DLS
- good when search space is huge and the depth of the solution is not known (*)

Bidirectional Search (BDS)

- Search from both initial state and goal to reduce search depth.
- \(O(b^{d/2})\) of BDS vs. \(O(b^{d+1})\) of BFS.

BDS: Considerations

1. how to back trace from the goal?
2. successors and predecessors: are operations reversible?
3. are goals explicit?: need to know the goal to begin with
4. check overlap in two branches
5. BFS? DFS? which strategy to use? Same or different?
BDS Example: 8-Puzzle

5 4
6 1 8
7 3 2
→
5 4 8
6 1
7 3 2
→ ...

• Is it a good strategy?
• What about Chess? Would it be a good strategy?
• What kind of domains may be suitable for BDS?

Avoiding Repeated States

Repeated states can be devastating in search problems.
• Common cases: problems with reversible operators → search space becomes infinite
• One approach: find a spanning tree of the graph

Avoiding Repeated States: Strategies

5 4
6 1 8
7 3 2
→
5 4 8
6 1
7 3 2
→
5 4
6 1 8
7 3 2
→ ...

• Do not return to the node's parent
• Avoid cycles in the path (this is a huge theoretical problem in its own right)
• Do not generate states that you generated before: use a hash table to make checks efficient

How to avoid storing every state? Would using a short signature (or a checksum) of the full state description help?

Key Points

• DLS, IDS, BDS search order, expansions, and queuing
• DLS, IDS, BDS evaluation
• DLS, IDS, BDS: suitable domains
• Repeated states: why removing them is important
Informed Search (Chapter 4)

From domain knowledge, obtain an **evaluation function**.

- best-first search: order nodes according to the evaluation function value
- greedy search: minimize estimated cost for reaching the goal – fast, but incomplete and non-optimal.
- \(A^* \): minimize \(f(n) = g(n) + h(n) \), where \(g(n) \) is the current path cost from start to \(n \), and \(h(n) \) is the estimated cost from \(n \) to goal.

Heuristic Function

- \(h(n) \) = estimated cost of the cheapest path from the state at node \(n \) to a goal state.
- The only requirement is the \(h(n) = 0 \) at the goal.
- **Heuristics** means “to find” or “to discover”, or more technically, “how to solve problems” (Polya, 1957).

Best First Search

function Best-First-Search (\(problem, \) Eval-Fn)

- *Queuing-Fn* ← sorted list by \(\text{Eval-Fn(node)} \)
- *return* General-Search(\(problem, \) Queuing-Fn)

- The queuing function queues the expanded nodes, and sorts it every time by the \(\text{Eval-Fn} \) value of each node.
- One of the simplest \(\text{Eval-Fn} \): **estimated cost** to reach the goal.

Overview

- Best-first search
- Heuristic function
- Greedy best-first search
- \(A^* \)
- Designing good heuristics
- \(IDA^* \)
- Iterative improvement algorithms
 1. Hill-climbing
 2. Simulated annealing

Heuristic Function

\(h(n) = \) estimated cost of the cheapest path from the state at node \(n \) to a goal state.

- The only requirement is the \(h(n) = 0 \) at the goal.
- **Heuristics** means “to find” or “to discover”, or more technically, “how to solve problems” (Polya, 1957).
Heuristics: Example

- \(h_{SLD}(n) \): straight line distance (SLD) is one example.

- Start from A and Goal is I: C is the most promising next step in terms of \(h_{SLD}(n) \), i.e. \(h(C) < h(B) < h(F) \).

- Requires some knowledge:
 1. coordinates of each city
 2. generally, cities toward the goal tend to have smaller SLD.

Greedy Best-First Search

function Greedy-Best-First Search (problem)
\[
h(n) = \text{estimated cost from } n \text{ to goal}
\]
return Best-First-Search(problem, h)

- Best-first with heuristic function \(h(n) \)

Greedy Best-First Search: Evaluation

Branching factor \(b \) and max depth \(m \):

- Fast, just like Depth-First-Search: single path toward the goal.
- Time: \(O(b^m) \)
- Space: same as time – all nodes are stored in sorted list(!), unlike DFS
- Incomplete, just like DFS
- Non-optimal, just like DFS

Total Path Cost = 450
A*: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

- \(f(n) = g(n) + h(n) \)
- \(f(n) \): estimated cost to goal through node \(n \)
- provably complete and optimal!

- restrictions: \(h(n) \) should be an admissible heuristic
- admissible heuristic: one that never overestimate the actual cost of the best solution through \(n \)

Behavior of A* Search

- usually, the \(f \) value never decreases along a given path: monotonicity
- in case it is nonmonotonic, i.e. \(f(\text{Child}) < f(\text{Parent}) \), make this adjustment:
 \[f(\text{Child}) = \max(f(\text{Parent}), g(\text{Child}) + h(\text{Child})) \]
- this is called pathmax

A* Search

function A* - Search (problem)

\[g(n) = \text{current cost up till } n \]
\[h(n) = \text{estimated cost from } n \text{ to goal} \]
return Best-First-Search(problem, \(g + h \))

- Condition: \(h(n) \) must be an admissible heuristic function!
- A* is optimal!

Bucharest Giurgiu Urziceni Hirsova Eforie Neamt Oradea Zerind Arad Timisoara Lugoj Mehadia Dobreta Craiova Sibiu Fagaras Pitesti Vaslui Iasi Rimnicu Vilcea Vatra Dornei Bucharest

Total Path Cost = 418
Optimality of A^*

G_2: suboptimal goal in the node-list.

n: unexpanded node on a shortest path to goal G_1

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $> g(G_1)$ since G_2 is suboptimal
- $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion.

Lemma to Optimality of A^*

Lemma: A^* expands nodes in order of increasing $f(n)$ value.

- Gradually adds f-contours of nodes (cf. BFS adds layers).
- The goal state may have a f value: let’s call it f^*
- This means that all nodes with $f < f^*$ will be expanded!

Complexity of A^*

A^* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

- condition for subexponential growth:
 $$|h(n) - h^*(n)| \leq O(\log h^*(n)),$$
 where $h^*(n)$ is the true cost from n to the goal.

- that is, error in the estimated cost to reach the goal should be less than even linear, i.e. $< O(h^*(n))$.

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. $\geq O(h^*(n)) > O(\log h^*(n))$.

Optimality of A^*: Example

1. Expansion of parent allowed: search fails at nodes B, D, and E.
2. Expansion of parent disallowed: paths through nodes B, D, and E with have an inflated path cost $g(n)$, thus will become nonoptimal.

$A \rightarrow C \rightarrow E \rightarrow C \rightarrow A \rightarrow F \rightarrow ...$

inflated path cost
Linear vs. Logarithmic Growth Error

<table>
<thead>
<tr>
<th>x</th>
<th>log(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>2.1</td>
</tr>
<tr>
<td>9</td>
<td>2.3</td>
</tr>
<tr>
<td>10</td>
<td>2.3</td>
</tr>
</tbody>
</table>

- Error in heuristic: $|h(n) - h^*(n)|$.
- For most heuristics, the error is at least linear.
- For A^* to have subexponential growth, the error in the heuristic should be on the order of $O(\log h^*(n))$.

Problem with A^*

- Space complexity is usually exponential!
 - we need a memory bounded version
 - one solution is: Iterative Deepening A^*, or IDA^*

A^*: Evaluation

- Complete: unless there are infinitely many nodes with $f(n) \leq f(G)$
- Time complexity: exponential in (relative error in $h \times$ length of solution)
- Space complexity: same as time (keep all nodes in memory)
- Optimal

Heuristic Functions: Example

Eight puzzle

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance (city block distance)

- $h_1(n) = 7$ (not counting the blank tile)
- $h_2(n) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$

* Both are admissible heuristic functions.
Dominance

If $h_2(n) \geq h_1(n)$ for all n and both are admissible, then we say that $h_2(n)$ dominates $h_1(n)$, and is better for search.

Typical search costs for depth $d = 14$:
- Iterative Deepening: 3,473,941 nodes expanded
- $A^*(h_1)$: 539 nodes
- $A^*(h_2)$: 113 nodes

Observe that in A^*, every node with $f < f^*$ is expanded. Since $f = g + h$, nodes with $h(n) < f^* - g(n)$ will be expanded, so larger h will result in less nodes being expanded.

- f^* is the f value for the optimal solution path.

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:
- allow tiles to move anywhere $\rightarrow h_1(n)$
- allow tiles to move to any adjacent location $\rightarrow h_2(n)$

For traveling:
- allow traveler to travel by air, not just by road: SLD

Other Heuristic Design

- Use composite heuristics: $h(n) = \max(h_1(n), ..., h_m(n))$
- Use statistical information: random sample h and true cost to reach goal. Find out how often h and true cost is related.

Iterative Deepening A^*: IDA^*

A^* is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain f bound, and gradually increase the f bound until a solution is found.
- More on IDA^* next time.
IDA*

function IDA*(problem)
 root ← Make-Node(Initial-State(problem))
 f-limit ← f-Cost(root)
 loop do
 solution, f-limit ← DFS-Contour(root, f-limit)
 if solution != NULL then return solution
 if f-limit == ∞ then return failure
 end loop

Basically, iterative deepening depth-first-search with depth defined as the \(f\)-cost \((f = g + n)\):

IDA* : Evaluation

- complete and optimal (with same restrictions as in A*)
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values \(h(n)\) can assume.

IDA* : Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values \(\rightarrow\) small number of \(f\)-contours to explore \(\rightarrow\) becomes similar to A*
- complex problems: each \(f\)-contour only contain one new node
 - if A* expands \(N\) nodes,
 \[
 IDA^* \text{ expands } \frac{N(N+1)}{2} = O(N^2)
 \]
- a possible solution is to have a fixed increment \(\epsilon\) for the \(f\)-limit
 \(\rightarrow\) solution will be suboptimal for at most \(\epsilon\) (\(\epsilon\)-admissible)

DFS-Contour(root, f-limit)

Find solution from node root, within the \(f\)-cost limit of f-limit. DFS-Contour returns solution sequence and new \(f\)-cost limit.

- if \(f\)-cost(root) > f-limit, return fail.
- if root is a goal node, return solution and new \(f\)-cost limit.
- recursive call on all successors and return solution and minimum \(f\)-limit returned by the calls
- return null solution and new \(f\)-limit by default

Similar to the recursive implementation of DFS.
Other Methods: Beam Search

Best-first search with a fixed limited branching factor

- expand the first n nodes with the best Eval-Fn value, where n is a small number.
- n is called the width of the beam
- good for domains with continuous time functions (like speech recognition)
- good for domains with huge branching factor (like above)

Iterative Improvement Algorithms

Start with a complete configuration (all variable values assigned, and optimal), and gradually improve it.

- Hill-climbing (maximize cost function)
- Gradient descent (minimize cost function)
- Simulated Annealing (probabilistic)

Hill-Climbing

- no queue, keep only the best node
- greedy, no back-tracking
- good for domains where all nodes are solutions:
 - goal is to improve quality of the solution
 - optimization problems
- note that it is different from greedy search, which keeps a node list

Hill-Climbing Strategies

Problems of local maxima, plateau, and ridges:

- try random-restart: move to a random location in the landscape and restart search from there
- keep n best nodes (beam search) *
- parallel search
- simulated annealing *

Hardness of problem depends on the shape of the landscape.
*: coming up next
Hill-Climbing: Problems

- Possible solution: \textit{simulated annealing} – gradually decrease randomness of move to attain globally optimal solution (more on this next week).

Simulated Annealing (SA)

Goal: minimize the energy E, as in statistical thermodynamics.

For successors of the current node,

- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E > 0$, the move is accepted with probability

 $$P(\Delta E) = e^{-\frac{\Delta E}{kT}},$$

 where k is the Boltzmann constant and T is temperature.
- randomness is in the comparison: $P(\Delta E) < \text{rand}(0, 1)$

$\Delta E = E_{\text{new}} - E_{\text{old}}$.

The heuristic $h(n)$ or $f(n)$ represents E.

Simulated Annealing: Overview

Annealing:

- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:

- basically, hill-climbing with randomness that allows going \textit{down} as well as the standard \textit{up}
- randomness (as temperature) is reduced over time

Temperature and $P(\Delta E) < \text{rand}(0, 1)$

Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.

- Higher temperature $T \rightarrow$ higher probability of \textit{downward} hill-climbing
- Lower $\Delta E \rightarrow$ higher probability of \textit{downward} hill-climbing
Reduction Schedule

High to low temperature reduction schedule is important:

- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter? linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.

Simulated Annealing Applications

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

Constraint Satisfaction Search

Constraint Satisfaction Problem (CSP):

- **state**: values of a set of variables
- **goal**: test if a set of constraints are met
- **operators**: set values of variables
- general search can be used, but specialized solvers for CSP work better

Constraints

- Unary, binary, and higher order constraints: how many variables should simultaneously meet the constraint
- Absolute constraints vs. preference constraints
- Variables are defined in a certain*domain*, which determines the possible set of values, either discrete or continuous.

This is part of a much more complex problem called *constrained optimization problems* in operations research consisting of cost function (either minimize or maximize) and several constraints. Problems can be linear, nonlinear, convex, nonconvex, etc. Straight-forward solutions exist for a limited subclass of these (for example, for linear programming problems can be solved by the simplex method).
CSP: continued

- CSPs include NP-complete problems such as 3-SAT, thus finding the solutions can require exponential time.

- However, constraints can help narrow down the possible options, therefore reducing the branching factor. This is because in CSP, the goal can be decomposed into several constraints, rather than being a whole solution.

- Strategies: backtracking (back up when constraint is violated), forward checking (do not expand further if look-ahead returns a constraint violation). Forward checking is often faster and simple to implement.

Heuristics for Constraint Satisfaction Problems

General strategies for variable selection:

- Most-constrained-variable heuristic (var with fewest possible values)
- Most-constraining-variable heuristic (var involved in the largest number of constraints)

and for value assignment:

- Least-constraining-value heuristic (value that rules out the smallest number of values for vars)

Reducing branching factor vs. leaving freedom for future choices.

Key Points

- best-first-search: definition
- heuristic function $h(n)$: what it is
- greedy search: relation to $h(n)$ and evaluation. How it is different from DFS (time complexity, space complexity)
- A^*: definition, evaluation, conditions of optimality
- complexity of A^*: relation to error in heuristics
- designing good heuristics: several rule-of-thumbs
- IDA^*: evaluation, time and space complexity (worst case)
- beam search concept
- hill-climbing concept and strategies
- simulated annealing: core algorithm, effect of T and ΔE, source of randomness.

Emacs Tips

- M-x : [Alt]-[x] or [ESC] then [x], C-x : [CTRL]-[x]
- M-x shell (run shell within emacs)
- C-p (↑), C-n (↓), C-b (←), C-f (→)
- C-x C-f (load file)
- M-x lisp-mode (environment for editing lisp code)
- C-s (search forward) C-r (reverse search)
- C-g (abort current command in scratch)
- C-k (cut line) C-y (yank, or paste)
- C-x C-x (end block) C-w (cut) C-y (yank, or paste)
- C-x u or M-x undo (undo)

Full reference card: http://www.cs.tamu.edu/faculty/choe/courses/02spring/refs
Game Playing

- attractive AI problem because it is abstract
- one of the oldest domains in AI
- in most cases, the world state is fully accessible
- computer representation of the situation can be clear and exact
- challenging: uncertainty introduced by the opponent and the complexity of the problem (full search is impossible)
- hard: in chess, branching factor is about 35, and 50 moves by each player = 35^{100} nodes to search
 - compare to 10^{40} possible legal board states
- game playing is more like real life than mechanical search

Games vs. Search Problems

“Unpredictable” opponent \rightarrow solution is a contingency plan

Time limits \rightarrow unlikely to find goal, must approximate

Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952–57)
- pruning to reduce costs (McCarthy, 1956)

Types of Games

<table>
<thead>
<tr>
<th></th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfect info</td>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>imperfect info</td>
<td>?</td>
<td>bridge, poker, scrabble</td>
</tr>
</tbody>
</table>

81 82 83 84
Two-Person Perfect Information Game

- **initial state**: initial position and who goes first
- **operators**: legal moves
- **terminal test**: game over?
- **utility function**: outcome (win:+1, lose:-1, draw:0, etc.)

- two players (MIN and MAX) taking turns to maximize their chances of winning (each turn generates one ply)
- one player's victory is another's defeat
- need a strategy to win no matter what the opponent does

Minimax Decision

- **function** Minimax-Decision (game) **returns** operator
 - return operator that leads to a child state with the \(\text{max}(\text{Minimax-Value(child state,game)}) \)

- **function** Minimax-Value(state,game) **returns** utility value
 - if \(\text{Goal(state)} \) then return Utility(state)
 - else if Max's move then
 - return max of successors' Minimax-Value
 - else
 - return min of successors' Minimax-Value

Minimax Exercise

- generate the whole tree, and apply utils function to the leaves
- go back upward assigning utility value to each node
- at MIN node, assign \(\text{min}(\text{successors' utility}) \)
- at MAX node, assign \(\text{max}(\text{successors' utility}) \)
- assumption: the opponent acts optimally
Minimax: Evaluation

Branching factor b, max depth m:

- **complete**: if the game tree is finite
- **optimal**: if opponent is optimal
- **time**: b^m
- **space**: bm – depth-first (only when utility function values of all nodes are known!)

Resource Limits

- **Time limit**: as in Chess → can only evaluate a fixed number of paths
- **Approaches**:
 - **evaluation function**: how desirable is a given state?
 - **cutoff test**: depth limit
 - **pruning**

Depth limit can result in the horizon effect: interesting or devastating events can be just over the horizon!

Evaluation Functions

For chess, usually a **linear** weighted sum of feature values:

- $\text{Eval}(s) = \sum_i w_i f_i(s)$
- $f_i(s) = (\text{number of white piece } X) - (\text{number of black piece } X)$
- other features: degree of control over the center area
- exact values do not matter: the order of Minimax-Value of the successors matter.

α Cuts

When the current max value is greater than the successor’s min value, don’t look further on that min subtree:

Right subtree can be at most 2, so MAX will always choose the left path regardless of what appears next.
β Cuts

When the current min value is less than the successor’s max value, don’t look further on that max subtree:

right subtree can be at least 5, so MIN will always choose the left path regardless of what appears next.

α − β Pruning Properties

Cut off nodes that are known to be suboptimal.

Properties:

- pruning does not affect final result
- good move ordering improves effectiveness of pruning
- with perfect ordering, time complexity = $b^{m/2}$
 - doubles depth of search
 - can easily reach 8-ply in chess
- $b^{m/2} = (\sqrt{b})^m$, thus $b = 35$ in chess reduces to $b = \sqrt{35} \approx 6$!!!

α − β Exercise

Cut off nodes that are known to be suboptimal.
Key Points

- Game playing: what are the types of games?
- Minimax: definition, and how to get minmax values
- Minimax: evaluation
- \(\alpha - \beta\) pruning: why it saves time

Overview

- formal \(\alpha - \beta\) pruning algorithm
- \(\alpha - \beta\) pruning properties
- games with an element of chance
- state-of-the-art game playing with AI
- more complex games

\(\alpha - \beta\) Pruning: Initialization

Along the path from the beginning to the current state:

- \(\alpha\): best MAX value
 - initialize to \(-\infty\)
- \(\beta\): best MIN value
 - initialize to \(\infty\)

\(\alpha - \beta\) Pruning Algorithm: Max-Value

\[
\text{function Max-Value (state, game, } \alpha, \beta) \rightarrow \text{utility value}
\]

\[
\alpha: \text{best MAX on path to state} \quad \beta: \text{best MIN on path to state}
\]

if Cutoff(state) then return Utility(state)

\[
v \leftarrow -\infty
\]

for each \(s\) in Successor(state) do

\[
\cdot v \leftarrow \text{Max}(\alpha, \text{Min-Value}(s, \text{game}, \alpha, \beta))
\]

\[
\cdot \text{if } v \geq \beta \text{ then return } v \quad */\text{ CUT!!}/*/ \]

\[
\cdot \alpha \leftarrow \text{Max}(\alpha, v)
\]

end

return \(v\)
Pruning Algorithm: Min-Value

- **Algorithm**:
  ```
  function Min-Value (state, game, α, β) return utility value
  α: best MAX on path to state; β: best MIN on path to state
  if Cutoff(state) then return Utility (state)
  for each s in Successor(state) do
    v ← ∞
    for each s in Successor(state) do
      v ← Min(β, Max-Value(s,game,α,β))
      if v ≤ α then return v /* CUT!! */
      β ← Min(β, v)
  end
  return v
  ```

Pruning Tips
- **At a MAX node**:
 - Only α is updated with the MAX of successors.
 - Cut is done by checking if returned $v \geq \beta$.
 - If all fails, $\text{MAX}(v \text{ of successors})$ is returned.
- **At a MIN node**:
 - Only β is updated with the MIN of successors.
 - Cut is done by checking if returned $v \leq \alpha$.
 - If all fails, $\text{MIN}(v \text{ of successors})$ is returned.

Ordering is Important for Good Pruning
- For MIN, sorting successor's utility in an **increasing** order is better (shown above; left).
- For MAX, sorting in **decreasing** order is better.

Games With an Element of Chance
- Rolling the dice, shuffling the deck of card and drawing, etc.
- **chance nodes** need to be included in the minimax tree
- try to make a move that maximizes the **expected value** → expectimax
- expected value of random variable X:
 $$E(X) = \sum_{x} xP(x)$$
- **expectimax**
 $$\text{expectimax}(C) = \sum_{i} P(d_i)\max_{s \in S(C,d_i)}(utility(s))$$
Game Tree With Chance Element

- chance element forms a new ply (e.g. dice, shown above)

Design Considerations for Probabilistic Games

- the value of evaluation function, not just the scale matters now! (think of what expected value is)
- time complexity: $b^m n^m$, where n is the number of distinct dice rolls
- pruning can be done if we are careful

State of the Art in Gaming With AI

- Chess: IBM’s Deep Blue defeated Garry Kasparov (1997)
- Backgammon: Tesauro’s Neural Network → top three (1992)
- Othello: smaller search space → superhuman performance
- Checkers: Samuel’s Checker Program running on 10Kbyte (1952)

Genetic algorithms can perform very well on select domains.

Hard Games

The game of Go, popular in East Asia:

- $19 \times 19 = 361$ grid: branching factor is huge!
- search methods inevitably fail: need more structured rules
- the bet was high: $1,400,000$ prize for the first computer program to beat a select, 12-year old player. The late Mr. Ing Chang Ki (photo above) put up the money from his personal funds.
Key Points

- formal $\alpha - \beta$ pruning algorithm: know how to apply pruning
- $\alpha - \beta$ pruning properties: evaluation
- games with an element of chance: what are the added elements?
 how does the minmax tree get augmented?