Neuroevolution Decision Strategies

- Input variables describe the state
- Output variables describe actions
- Network between input and output
 - Hidden nodes
 - Weighted connections
- Execution:
 - Numerical activation of input
 - Nonlinear weighted sums
- Performs a nonlinear mapping
 - Memory in recurrent connections
- Connection weights and structure evolved

Conventional Neuroevolution (CNE)

- Evolving connection weights in a population of networks
- Chromosomes are strings of weights (bits or real)
 - E.g. 10010110101100101111001
 - Usually fully connected, fixed topology
 - Initially random
Conventional Neuroevolution (2)

- Each NN evaluated in the task
 - Good NN reproduce through crossover, mutation
 - Bad thrown away
 - Over time, NNs evolve that solve the task
- Natural mapping between genotype and phenotype
- GA and NN are a good match!

Problems with CNE

- Evolution converges the population (as usual with EAs)
 - Diversity is lost; progress stagnates
- Competing conventions
 - Different, incompatible encodings for the same solution
- Too many parameters to be optimized simultaneously
 - Thousands of weight values at once

Advanced NE 1: Evolving Neurons

- Evolving individual neurons to cooperate in networks1,2,24 (Agogino GECCO’05)
- E.g. Enforced Sub-Populations (ESP?)
 - Each (hidden) neuron in a separate subpopulation
 - Fully connected; weights of each neuron evolved
 - Populations learn compatible subtasks

Evolving Neurons with ESP

- Evolution encourages diversity automatically
 - Good networks require different kinds of neurons
- Evolution discourages competing conventions
 - Neurons optimized for compatible roles
- Large search space divided into subtasks
 - Optimize compatible neurons
Advanced NE 2: Evolutionary Strategies

- Evolving complete networks with ES (CMA-ES15)
- Small populations, no crossover
- Instead, intelligent mutations
 - Adapt covariance matrix of mutation distribution
 - Take into account correlations between weights
- Smaller space, less convergence, fewer conventions

How Can Crossover be Implemented?

- Problem: Structures do not match
- Solution: Utilize historical markings

Advanced NE 3: Evolving Topologies

- Optimizing connection weights and network topology11,40
- E.g. Neuroevolution of Augmenting Topologies (NEAT27,29)
- Based on Complexification
- Of networks:
 - Mutations to add nodes and connections
- Of behavior:
 - Elaborates on earlier behaviors

How can Innovation Survive?

- Problem: Innovations have initially low fitness
- Solution: Speciate the population
 - Innovations have time to optimize
 - Mitigates competing conventions
 - Promotes diversity
How Can We Search in Large Spaces?

- Need to optimize not just weights but also topologies

- Solution: Start with minimal structure and complexify
 - Hidden nodes, connections, input features (Whiteson GECCO’05)

Extending NE to Applications

- Evolving composite decision makers
- Evolving teams of agents
- Utilizing coevolution
- Real-time neuroevolution
- Combining human knowledge with evolution

Further NE Techniques

- Incremental evolution
- Utilizing population culture
- Evolving ensembles of NNs (Pardoe GECCO’05)
- Evolving neural modules
- Evolving transfer functions and learning rules
- Combining learning and evolution

Applications to Control

- Pole-balancing benchmark
 - Originates from the 1960s
 - Original 1-pole version too easy
 - Several extensions: acrobat, jointed, 2-pole, particle chasing
- Good surrogate for other control tasks
 - Vehicles and other physical devices
 - Process control
Competitive Coevolution

- Evolution requires an opponent to beat
- Such opponents are not always available
- Co-evolve two populations to outdo each other
- How to maintain an arms race?

Competitive Coevolution with NEAT

- Complexification elaborates instead of alters
 - Adding more complexity to existing behaviors
- Can establish a coevolutionary arms race
 - Two populations continually outdo each other
 - Absolute progress, not just tricks

Robot Duel Domain

- Two Khepera-like robots forage, pursue, evade
 - Collect food to gain energy
 - Win by crashing to a weaker robot

Early Strategies

- Crash when higher energy
- Collect food by accident
- DEMO
Mature Strategies

- Collect food to gain energy
- Avoid moving to lose energy
- Standoff: Difficult to predict outcome
- DEMO

Sophisticated Strategy

- “Fake” a move up, force away from last piece
- Win by making a dash to last piece
- Complexification → arms race
- DEMO

Applications to Games

- Good research platform
 - Controlled domains, clear performance, safe
 - Economically important; training games possible

- Board games: beyond limits of search
 - Evaluation functions in checkers, chess
 - Filtering information in go, othello

Discovering Novel Strategies in Othello

- Players take turns placing pieces
- Each move must flank opponent’s piece
- Surrounded pieces are flipped
- Player with most pieces wins
Strategies in Othello

- **Positional**
 - Number of pieces and their positions
 - Typical novice strategy
- **Mobility**
 - Number of available moves: force a bad move
 - Much more powerful, but counterintuitive
 - Discovered in 1970’s in Japan

Evolving Against a Random Player

- Network sees the board, suggests moves by ranking
- Networks maximize piece counts throughout the game
- A positional strategy emerges
- Achieved 97% winning percentage

Evolving Against an \(\alpha - \beta\) Program

- Iago’s positional strategy destroyed networks at first
- Evolution turned low piece count into an advantage
- Mobility strategy emerged!
- Achieved 70% winning percentage

Example game

- Black’s positions strong, but mobility weak
- White (the network) moves to f2
- Black’s available moves b2, g2, and g7 each will surrender a corner
- The network wins by forcing a bad move
Discovering Novel Strategies

- Neuroevolution discovered a strategy novel to us
- "Evolution works by tinkering"
 - So does neuroevolution
 - Initial disadvantage turns into novel advantage

Future Challenge: Utilizing Knowledge

- Given a problem, NE discovers a solution by exploring
 - Sometimes you already know (roughly) what works
 - Sometimes random initial behavior is not acceptable
- How can domain knowledge be utilized?
 - By incorporating rules (Yong GECCO’05)
 - By learning from examples

Numerous Other Applications

- Creating art, music
- Theorem proving
- Time-series prediction
- Computer system optimization
- Manufacturing optimization
- Process control optimization
- Etc.

Conclusion

- NE is a powerful technology for sequential decision tasks
 - Evolutionary computation and neural nets are a good match
 - Lends itself to many extensions
 - Powerful in applications
- Easy to adapt to applications
 - Control, robotics, optimization
 - Artificial life, biology
 - Gaming: entertainment, training
- Lots of future work opportunities
 - Theory not well developed
 - Indirect encodings
 - Learning and evolution
 - Knowledge and interaction
References

