Hypothesis Testing

- Empirically evaluating accuracy of hypotheses: important activity in ML.

- Three questions:
 - Given observed accuracy over a sample set, how well does this estimate apply over additional samples?
 - Given a hypothesis outperforming another, how probable is it that this hypothesis is more accurate in general?
 - With limited data, how to learn and also estimate its accuracy?

- Use of statistical methods to put a bound on the error between the estimated and the true accuracy.

Evaluation of Performance of Learned h

- Want to decide whether to use h or not: Want to understand the accuracy of the hypothesis learned from a limited-size training set.

- Evaluation may be part of the ML algorithm itself.

Issues

Learn hypothesis on limited data, and estimate future accuracy:

- Bias in the estimate:
 - The training data is a subset of the instance space, and may introduce bias: the estimated error may be different from the true error.

- Variance in the estimate:
 - Even though the estimate may be unbiased, there can be a large variance in the accuracy over different test sets.
 - Usually, smaller training sets lead to larger variance.

Trade-off Between Bias and Variance

- Less parameters \rightarrow less accurate, but variance over different test sets is reduced.

- More parameters \rightarrow more accurate, but variance over different test sets is increased.
Topics

- Evaluating hypotheses (estimate accuracy of a hypothesis).
- Compare accuracy of two hypotheses.
- Compare accuracy of two algorithms when data set is limited.

Estimating Hypothesis Accuracy

General setup:

- X: instance space.
- D: prob. distribution of encountering $x \in X$.

Task:

- Given hypothesis h and data set of size n from distribution D, what is the best estimate of the accuracy of h on future instances from the same distribution?
- What is the probable error in the accuracy estimate?

Probability Distribution of Sample Mean

From instance space X, draw a small sample set S_i of size n.

- For different sample sets S_i, the mean will differ:
 $$\mu_i \equiv \frac{1}{n} \sum_{x \in S_i} x$$

- The questions are:
 - Is $\mu_i = \mu_X$ (where μ_X is the true mean over X)?
 - How is μ_i distributed ($P(\mu)$, for $\mu \in \{\mu_1, \mu_2, \ldots \mu_n\}$)?

Example of Sampling Distribution of the Mean

$X = \{1, 2, 3, 4\}$, and each numbers are equally likely to occur (i.e., D is a uniform distribution). Let’s sample with $n = 2$.

<table>
<thead>
<tr>
<th>Samples of size 2</th>
<th>Sample means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>1</td>
</tr>
<tr>
<td>1st \ 2nd</td>
<td>1,1</td>
</tr>
<tr>
<td>2</td>
<td>2,1</td>
</tr>
<tr>
<td>3</td>
<td>3,1</td>
</tr>
<tr>
<td>4</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Note:

- From Kachigan (1991)

References

Sample Distribution vs. Sampling Distribution of the Mean

- Depending on how you sample your data, your sample mean can end up being different values.
- The sample mean has a distribution of its own centered at the actual population mean ($\sum_{x=\{1,2,3,4\}} \frac{1}{4}x = 2.5$).

True mean μ and sample mean μ_s

- With a particular probability p, μ_s is within a particular range r from the true mean μ.
- In other words, if you pick any sample mean μ_s, with the probability p, the true mean is within the range r.
- Given a fixed probability $p = 0.95$, the range r is determined by the variance σ_{μ_s}.

Sampling Distribution of the Mean

- Underlying distribution with mean μ and std σ.
- Distribution of sample mean μ_s has mean $\mu_{\mu_s} = \mu$ and std: $\sigma_{\mu_s} = \frac{\sigma}{\sqrt{n}}$, and tends to the normal distribution as n grows.
- Interpretation:
 - When you get a particular sample mean μ_s, you know it is distributed like $\sim \mathcal{N}(\mu, \sigma_{\mu_s})$.
 - With more samples, σ_{μ_s} reduces, so you’re more confident about your particular μ_s being close to the true mean μ.

Sample Error and True Error

Sample error:
- Sample error of hypothesis h based on sample set S of size n:
 $$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x), h(x)),$$
 where $f(\cdot)$ is the target function, and $\delta(a, b) = 1$ if $a = b$ and 0 if $a \neq b$.
- In other words, $error_S(h)$ is the mean error of hypothesis h.

True error:
- True error of hypothesis h is the probability that h will misclassify a single example drawn from the distribution \mathcal{D}:
 $$error_\mathcal{D}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$
Confidence Interval

- How good an estimator of $\text{error}_D(h)$ is provided by $\text{error}_S(h)$?
- Want to estimate true error based on sample S of n examples according to distribution D.
- h commits r errors: $\text{error}_S(h) = r/n$.
- With approx. 95% probability, true error is within the interval:
 $$\text{error}_S(h) \pm 1.96 \sqrt{\frac{\text{error}_S(h)(1 - \text{error}_S(h))}{n}}.$$

Confidence Interval Example

- S of size $n = 40$.
- h committing $r = 12$ errors.
- $\text{error}_S(h) = 12/40 = 0.30$ (mean error, or error rate).
- 95% confidence interval:
 $$0.30 \pm 1.96 \sqrt{\frac{0.3 \times (1.0 - 0.3)}{40}} = 0.30 \pm 0.14$$

Note: if n is high, even when r/n may be the same, the interval size would reduce.

Sampling Theory Basics: Summary

- Random variable: variable that can take on values with certain probability.
- Probability distribution: $\Pr(Y = y_i)$.
- Expected value: $E[Y] = \sum_i y_i \Pr(Y = y_i)$.
- Standard deviation: $\sqrt{\text{Var}(Y)}$.
- Binomial distribution: binary outcome, with probability p of 0 and $(1 - p)$ for 1; Probability of r 1’s with n samples.
- Normal distribution
- Central limit theorem: sum of iid random variables tend to the normal distribution.
- Estimator is a random variable Y that estimates parameter p.
- Estimation bias: $E(Y) - p$.
- $N\%$ confidence interval estimate of p: interval that includes true p with $N\%$ probability.
Binomial Distribution: e.g., Coin Toss

- Outcome itself is described by a random variable $Y \in \{\text{Head}, \text{Tail}\}$.
- $P(Y = \text{Head}) = p$ and $P(Y = \text{Tail}) = (1 - p)$.
- Probability of observing r heads out of n coin tosses (this value corresponds to a random variable R):
 $$Pr(R = r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}.$$
- $Pr(R = r)$ can be seen as the probability of observing r errors in a sample size of n (for binary target categories).

Mean and Variance in Binomical Distributions

- $E[Y] \equiv \sum_{i=1}^{n} y_i Pr(Y = y_i) = np$
- $Var[Y] \equiv E[(Y - E[Y])^2] = np(1-p)$

Errors, in Terms of Binominal Distribution

- $error_S(h) = \frac{r}{n}$
- $error_D = p$

Estimation Bias

- Estimation bias of an estimator Y for a parameter p is:
 $$E[Y] - p$$

Variance in Estimation

- $error_S(h) = \frac{r}{n}$
- Std[r] = $\sqrt{np(1-p)}$
- Std[$error_S(h)$] = $Std\left[\frac{r}{n}\right] = \frac{Std[r]}{n}$
 $$= \frac{\sqrt{np(1-p)}}{n} = \sqrt{\frac{p(1-p)}{n}}$$
 $$\approx \frac{\sqrt{error_S(h)(1-error_S(h))}}{n}$$

Normal Distribution

- Mean $E[X] = \mu$, and variance $Var[X] = \sigma^2$.
- Probability density:
 $$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}$$
- Probability of falling between interval $[a, b]$:
 $$\int_{a}^{b} p(x)dx$$
- Central limit theorem: sum of a large number of iid random variables (the sum itself is a random variable) tends to Normal.
Confidence Interval in Normal Distributions

- $N\%$ of probability mass in Normal distributions are within:
 $$\mu \pm z_N \sigma.$$
- That means, a randomly drawn value y will be within the above interval with a $N\%$ chance.
- In other words, if you pick any value y, with $N\%$ chance, the mean will be within the interval:
 $$y \pm z_N \sigma.$$

Calculating Confidence Intervals

1. Pick parameter p to estimate
 - $\text{error}_D(h)$
2. Choose an estimator
 - $\text{error}_S(h)$
3. Determine probability distribution that governs estimator
 - Distribution of $\text{error}_S(h)$ can be approximated by Normal distribution when n is large
4. Find interval (L, U) such that $N\%$ of probability mass falls in the interval
 - Use table of z_N values

Two-Sided vs. One-Sided Bounds

- Two-sided: Lower and upper bound with $100(1 - \alpha/2)\%$ confidence
- One-sided: Lower bound only (or upper bound only) with $100(1 - \alpha)\%$.
 - What is the probability that $\text{error}_D(h)$ is at most U?
Difference in Error of Two Hypotheses

Test h_1 on sample S_1, test h_2 on S_2

1. Pick parameter to estimate

$$d ≡ \text{error}_D(h_1) - \text{error}_D(h_2)$$

2. Choose an estimator

$$\hat{d} ≡ \text{error}_{S_1}(h_1) - \text{error}_{S_2}(h_2)$$

3. Determine probability distribution that governs estimator

$$\sigma_d ≈ \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}$$

4. Find interval (L, U) such that N% of probability mass falls in the interval

$$\hat{d} \pm zN\left(\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}\right)$$

Paired t-Test for Comparing h_A and h_B

1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do

$$\delta_i \leftarrow \text{error}_{T_i}(h_A) - \text{error}_{T_i}(h_B)$$

3. Return the value $\bar{\delta}$, where

$$\bar{\delta} = \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

$N\%$ confidence interval estimate for d:

$$\bar{\delta} \pm t_{N,(k-1)} \frac{s_{\bar{\delta}}}{\sqrt{k}}$$

$$s_{\bar{\delta}} = \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \bar{\delta})^2}$$

Note: δ_i approximately Normally distributed, and t differ for different sample size, as well as %.

Hypothesis Testing

- What is the prob. that $\text{error}_D(h_1) > \text{error}_D(h_2)$?

- Even if $\text{error}_{S_1}(h_1) > \text{error}_{S_2}(h_2)$, there is a chance that $\text{error}_D(h_1) < \text{error}_D(h_2)$.

- E.g., what is the chance of $d > 0$ when $\hat{d} = 0.1$ ($\text{error}_{S_1}(h_1) = 0.3$ and $\text{error}_{S_2}(h_2) = 0.2$)?
 - $\hat{d} < d + 0.1 = E[\hat{d}] + 0.1 = \mu_{\hat{d}} + 0.1$
 - $\hat{d} < \mu_d + 1.64 \times \sigma_{\hat{d}} = \mu_d + 1.64 \times 0.061$
 - $z_{90\%} = 1.64$ for two-sided interval, so the chance is 95%.

- Better to think how to reject the null hypothesis:
 - Null hypothesis $H_0: d = 0$
 - Alternative hypothesis $H_1: d > 0$ (must ensure $P(d < 0) = 0$)

Comparing learning algorithms L_A and L_B

What we’d like to estimate:

$$E_{S \subset D}[\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$

where $L(S)$ is the hypothesis output by learner L using training set S, i.e., the expected difference in true error between hypotheses output by learners L_A and L_B, when trained using randomly selected training sets S drawn according to distribution D.

But, given limited data D_0, what is a good estimator?

- could partition D_0 into training set S and training set T_0, and measure

$$\text{error}_{T_0}(L_A(S_0)) - \text{error}_{T_0}(L_B(S_0))$$

- even better, repeat this many times and average the results (next slide)
Comparing learning algorithms L_A and L_B

1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do
 - use T_i for the test set, and the remaining data for training set S_i
 - $S_i \leftarrow \{D_0 - T_i\}$
 - $h_A \leftarrow L_A(S_i)$
 - $h_B \leftarrow L_B(S_i)$
 - $\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$

3. Return the value $\bar{\delta}$, where
 \[
 \bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i
 \]