Search and Game Playing

Overview

- Search problems: definition
- Example: 8-puzzle
- General search
- Evaluation of search strategies
- Strategies: breadth-first, uniform-cost, depth-first
- More uninformed search: depth-limited, iterative deepening, bidirectional search

Emacs Tips

- multiple windows in emcs (up/down): C-x 2
- multiple windows in emcs (left/right): C-x 3
- switch between buffers: C-x b
- reduce to one window: C-x 1
- navigation between windows in emcs: C-x o
- increasing height of window in emcs: C-x ^
- killing current window in emcs: C-x k

Search Problems: Definition

Search = < initial state, operators, goal states >

- Initial State: description of the current situation as given in a problem
- Operators: functions from any state to a set of successor (or neighbor) states
- Goal: subset of states, or test rule
Variants of Search Problems

Search = \(<\text{state space, initial state, operators, goal states}>\)

- **State space**: set of all possible states reachable from the current initial state through repeated application of the operators (i.e. path).

Search = \(<\text{initial state, operators, goal states, path cost}>\)

- **Path cost**: find the best solution, not just a solution. Cost can be many different things.

Types of Search

- **Uninformed**: systematic strategies (Chapter 3)
- **Informed**: Use domain knowledge to narrow search (Chapter 4)
- **Game playing as search**: minimax, state pruning, probabilistic games (Chapter 5).

Search State

State as Data Structure

- **Examples**: variable assignment, properties, order in list, bitmap, graph (vertex and edges)
- **Captures all possible ways world could be**
- **Typically static, discrete (symbolic), but does not have to be**

Choosing a Good Representation

- **Concise** (keep only the relevant features)
- **Explicit** (easy to compute when needed)
- **Embeds constraints**

Operators

Function from state to subset of states

- **Drive to neighboring city**
- **Place piece on chess board**
- **Add person to meeting schedule**
- **Slide tile in 8-puzzle**

Characteristics

- **Often requires instantiation** (fill in variables)
- **Encode constraints** (only certain operations are allowed)
- **Generally discrete**: continuous parameters \(\rightarrow\) infinite branching
Goals: Subset of states or test rules

Specification:
- set of states: enumerate the eligible states
- partial description: e.g. a certain variable has value over \(x \).
- constraints: or set of constraints. Hard to enumerate all states matching the constraints, or very hard to come up with a solution at all (i.e. you can only verify it; P vs. NP).

Other considerations:
- space, time, quality (exact vs. approximate trade-offs)

An Example: 8-Puzzle

State: location of 8 number tiles and one blank tile
Operators: blank moves left, right, up, or down
Goal test: state matches the configuration on the right (see above)
Path cost: each step cost 1, i.e. path length, or search tree depth

Generalization: 15-puzzle, ..., \((N^2 - 1)\)-puzzle

Possible state representations in LISP (0 is the blank):
- \((0\ 2\ 3\ 1\ 8\ 4\ 7\ 6\ 5)\)
- \(((0\ 2\ 3)\ (1\ 8\ 4)\ (7\ 6\ 5))\)
- \(((0\ 1\ 7)\ (2\ 8\ 6)\ (3\ 4\ 5))\)
- or use the make-array, aref functions.

How easy to: (1) compare, (2) operate on, and (3) store (i.e. size).
Goal Test

As simple as a single LISP call:

* (defvar *goal-state* '(1 2 3 8 0 4 7 6 5))
GOAL-STATE

* (equal *goal-state* '(1 2 3 8 0 4 7 6 5))
T

General Search Algorithm

Pseudo-code:

function General-Search (problem, Que-Fn)
node-list := initial-state
loop begin
 // fail if node-list is empty
 if Empty(node-list) then return FAIL
 // pick a node from node-list
 node := Get-First-Node(node-list)
 // if picked node is a goal node, success!
 if (node == goal) then return as SOLUTION
 // otherwise, expand node and enqueue
 node-list := Que-Fn(node-list, Expand(node))
loop end

Evaluation of Search Strategies

- time-complexity: how many nodes expanded so far?
- space-complexity: how many nodes must be stored in node-list at any given time?
- completeness: if solution exists, guaranteed to be found?
- optimality: guaranteed to find the best solution?

Breadth First Search

• node visit order (goal test): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
• queuing function: enqueue at end (add expanded node at the end of the list)
BFS: Expand Order

1. Evolution of the queue (bold = expanded and added children):
 1. [1]: initial state
 2. [2][3]: dequeue 1 and enqueue 2 and 3
 3. [3][4][5]: dequeue 2 and enqueue 4 and 5
 4. [4][5][6][7]: all depth 3 nodes
 ...
 8. [8][9][10][11][12][13][14][15]: all depth 4 nodes

Uniform Cost

BFS with expansion of lowest-cost nodes: path cost is $g(node)$.

- **BFS**: $g(n) = \text{Depth}(node)$

BFS: Evaluation

branching factor b, depth of solution d:
- complete: it will find the solution if it exists
- time: $1 + b + b^2 + \ldots + b^d$
- space: $O(b^{d+1})$ where d is the depth of the shallowest solution
- space is more problem than time in most cases (p 75, figure 3.12).
- time is also a major problem nonetheless (same as time)

Depth First Search

- node visit order (goal test): 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15
- queuing function: enqueue at left (stack push; add expanded node at the beginning of the list)
DFS: Expand Order

Evolution of the queue (**bold**=expanded and added children):
1. [1]: initial state
2. [2][3]: pop 1 and push expanded in the front
3. [4][5][3]: pop 2 and push expanded in the front
4. [8][9][5][3]: pop 4 and push expanded in the front

DFS: Evaluation

branching factor b, depth of solutions d, max depth m:
- incomplete: may wander down the wrong path
- time: $O(b^m)$ nodes expanded (worst case)
- space: $O(bm)$ (just along the current path)
- good when there are many shallow goals
- bad for deep or infinite depth state space

Implementation

- Use of stack or queue: explicit storage of expanded nodes
- Recursion: implicit storage in the recursive call stack

Key Points

- Description of a search problem: initial state, goals, operators, etc.
- Considerations in designing a representation for a state
- Evaluation criteria
- BFS, UCS, DFS: time and space complexity, completeness
- Differences and similarities between BFS and UCS
- When to use one vs. another
- Node visit orders for each strategy
- Tracking the stack or queue at any moment
Depth Limited Search (DLS): Limited Depth DFS

- node visit order for each depth limit l:
 1 ($l = 1$); 1 2 3 ($l = 2$); 1 2 4 5 3 6 7 ($l = 3$);
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well:
 ($<depth>$ $<node>$)

DLS: Expand Order

Evolution of the queue (bold =expanded and then added):
($<depth>$, $<node>$); Depth limit = 3
1. [(d1, 1)]: initial state
2. [(d2,2)][(d2,3)]: pop 1 and push 2 and 3
3. [(d3,4)][(d3,5)]: pop 2 and push 4 and 5
4. [(d3,5)]: pop 4, cannot expand it further
5. [(d2, 3)]: pop 5, cannot expand it further
6. [(d3,6)][(d3,7)]: pop 3, and push 6, 7
...

DLS: Evaluation

branching factor b, depth limit l, depth of solution d:
- complete: if $l \geq d$
- time: $O(b^l)$ nodes expanded (worst case)
- space: $O(bl)$ (same as DFS, where $l = m$ (m: max depth of tree in DFS)
- good if solution is within the limited depth.
- non-optimal (same problem as in DFS).

Iterative Deepening Search: DLS by Increasing Limit

- node visit order:
 1 ; 1 2 3; 1 2 4 5 3 6 7; 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15; ...
- revisits already explored nodes at successive depth limit
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: ($<depth>$ $<node>$)
IDS: Expand Order

Basically the same as DLS: Evolution of the queue (*bold* = expanded and then added): $\langle\text{depth}, \text{node}\rangle$; e.g. Depth limit = 3
1. $\langle d1, 1 \rangle$: initial state
2. $\langle [d2,2],[d2,3] \rangle$: pop 1 and push 2 and 3
3. $\langle [d3,4],[d3,5] \rangle$: pop 2 and push 4 and 5
4. $\langle [d3,5],[d2,3] \rangle$: pop 4, cannot expand it further
5. $\langle [d2,3] \rangle$: pop 5, cannot expand it further
6. $\langle [d3,6],[d3,7] \rangle$: pop 3, and push 6, 7

IDS: Evaluation

branching factor b, depth of solution d:
- complete: cf. DLS, which is conditionally complete
- time: $O(b^d)$ nodes expanded (worst case)
- space: $O(bd)$ (cf. DFS and DLS)
- **optimal!**: unlike DFS or DLS
- good when search space is huge and the depth of the solution is not known (*)

Bidirectional Search (BDS)

- Search from both initial state and goal to reduce search depth.
- $O(b^{d/2})$ of BDS vs. $O(b^{d+1})$ of BFS.

BDS: Considerations

1. how to back trace from the goal?
2. successors and predecessors: are operations reversible?
3. are goals explicit?: need to know the goal to begin with
4. check overlap in two branches
5. BFS? DFS? which strategy to use? Same or different?
BDS Example: 8-Puzzle

5 4 8 1 3 2
6 1 7 3 2

→
5 4 6 1 8 3 2
7 3 1 8 4

→
5 4 6 1 8 3 2
7 6 1 8 4

• Is it a good strategy?

• What about Chess? Would it be a good strategy?

• What kind of domains may be suitable for BDS?

Avoiding Repeated States

Repeated states can be devastating in search problems.

• Common cases: problems with reversible operators → search space becomes infinite

• One approach: find a spanning tree of the graph

Avoiding Repeated States: Strategies

• Do not return to the node’s parent

• Avoid cycles in the path (this is a huge theoretical problem in its own right)

• Do not generate states that you generated before: use a hash table to make checks efficient

How to avoid storing every state? Would using a short signature (or a checksum) of the full state description help?

Key Points

• DLS, IDS, BDS search order, expansions, and queuing

• DLS, IDS, BDS evaluation

• DLS, IDS, BDS: suitable domains

• Repeated states: why removing them is important
Overview

- Best-first search
- Heuristic function
- Greedy best-first search
- A^*
- Designing good heuristics
- IDA^*
- Iterative improvement algorithms
 1. Hill-climbing
 2. Simulated annealing

Informed Search (Chapter 4)

From domain knowledge, obtain an **evaluation function**.

- best-first search: order nodes according to the evaluation function value
- greedy search: minimize estimated cost for reaching the goal – fast, but incomplete and non-optimal.
- A^*: minimize $f(n) = g(n) + h(n)$, where $g(n)$ is the current path cost from start to n, and $h(n)$ is the estimated cost from n to goal.

Best First Search

function Best-First-Search ($problem$, $Eval-Fn$)

```
Queuing-Fn ← sorted list by $Eval-Fn$(node)
return General-Search($problem$, $Queuing-Fn$)
```

- The queuing function queues the expanded nodes, and sorts it every time by the $Eval-Fn$ value of each node.
- One of the simplest $Eval-Fn$: **estimated cost** to reach the goal.

Heuristic Function

- $h(n)$ = estimated cost of the cheapest path from the state at node n to a goal state.
- The only requirement is the $h(n) = 0$ at the goal.
- **Heuristics** means “to find” or “to discover”, or more technically, “how to solve problems” (Polya, 1957).
• $h_{SLD}(n)$: straight line distance (SLD) is one example.

• Start from A and Goal is I: C is the most promising next step in terms of $h_{SLD}(n)$, i.e. $h(C) < h(B) < h(F)$

• Requires some knowledge:
 1. coordinates of each city
 2. generally, cities toward the goal tend to have smaller SLD.

Greedy Best-First Search: Evaluation

Branching factor b and max depth m:

• Fast, just like Depth-First-Search: single path toward the goal.

• Time: $O(b^m)$

• Space: same as time – all nodes are stored in sorted list(!), unlike DFS

• Incomplete, just like DFS

• Non-optimal, just like DFS
A*: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

- \(f(n) = g(n) + h(n) \)
- \(f(n) \): estimated cost to goal through node \(n \)
- provably complete and optimal!
- restrictions: \(h(n) \) should be an admissible heuristic
- admissible heuristic: one that never overestimate the actual cost of the best solution through \(n \)

Behavior of A* Search

- usually, the \(f \) value never decreases along a given path: monotonicity
- in case it is nonmonotonic, i.e. \(f(Child) < f(Parent) \), make this adjustment:
 \(f(Child) = \max(f(Parent), g(Child) + h(Child)) \).
- this is called pathmax

A* Search

function A*-Search (problem)

\[
\begin{align*}
&g(n) = \text{current cost up till } n \\
&h(n) = \text{estimated cost from } n \text{ to goal} \\
\end{align*}
\]

return Best-First-Search(problem, \(g + h \))

- Condition: \(h(n) \) must be an admissible heuristic function!
- A* is optimal!
Optimality of A^*

G_2: suboptimal goal in the node-list.

n: unexpanded node on a shortest path to goal G_1

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $> g(G_1)$ since G_2 is suboptimal
- $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion.

Lemma to Optimality of A^*

Lemma: A^* expands nodes in order of increasing $f(n)$ value.

- Gradually adds f-contours of nodes (cf. BFS adds layers).
- The goal state may have a f value: let’s call it f^*
- This means that all nodes with $f < f^*$ will be expanded!

Complexity of A^*

A^* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

- condition for subexponential growth:
 $|h(n) - h^*(n)| \leq O(\log h^*(n))$,
 where $h^*(n)$ is the true cost from n to the goal.

 - that is, error in the estimated cost to reach the goal should be less than even linear, i.e. $< O(h^*(n))$.

 Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. $\geq O(h^*(n)) > O(\log h^*(n))$.

Optimality of A^*: Example

1. Expansion of parent allowed: search fails at nodes B, D, and E.

2. Expansion of parent disallowed: paths through nodes B, D, and E with have an inflated path cost $g(n)$, thus will become nonoptimal.

$A \rightarrow C \rightarrow E \rightarrow C \rightarrow A \rightarrow F \rightarrow ...$

inflated path cost
Linear vs. Logarithmic Growth Error

- Error in heuristic: $|h(n) - h^*(n)|$.
- For most heuristics, the error is at least linear.
- For A^* to have subexponential growth, the error in the heuristic should be on the order of $O(\log h^*(n))$.

Problem with A^*

Space complexity is usually exponential!

- we need a memory bounded version
- one solution is: Iterative Deepening A^*, or IDA^*

A* : Evaluation

- Complete : unless there are infinitely many nodes with $f(n) \leq f(G)$
- Time complexity: exponential in (relative error in $h \times$ length of solution)
- Space complexity: same as time (keep all nodes in memory)
- Optimal

Heuristic Functions: Example

Eight puzzle

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance (city block distance)

$h_1(n) = 7$ (not counting the blank tile)

$h_2(n) = 2+3+3+2+4+2+0+2 = 18$

* Both are admissible heuristic functions.
Dominance

If $h_2(n) \geq h_1(n)$ for all n and both are admissible, then we say that $h_2(n)$ dominates $h_1(n)$, and is better for search.

Typical search costs for depth $d = 14$:

- Iterative Deepening: 3,473,941 nodes expanded
- $A^*(h_1)$: 539 nodes
- $A^*(h_2)$: 113 nodes

Observe that in A^*, every node with $f < f^*$ is expanded. Since $f = g + h$, nodes with $h(n) < f^* - g(n)$ will be expanded, so larger h will result in less nodes being expanded.

- f^* is the f value for the optimal solution path.

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:

- allow tiles to move anywhere $\rightarrow h_1(n)$
- allow tiles to move to any adjacent location $\rightarrow h_2(n)$

For traveling:

- allow traveler to travel by air, not just by road: SLD

Other Heuristic Design

- Use composite heuristics: $h(n) = \max(h_1(n), ..., h_m(n))$
- Use statistical information: random sample h and true cost to reach goal. Find out how often h and true cost is related.

Iterative Deepening A^*: IDA^*

A^* is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain f bound, and gradually increase the f bound until a solution is found.
- More on IDA^* next time.
IDA

<table>
<thead>
<tr>
<th>function $IDA^*(\text{problem})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{root} \leftarrow \text{Make-Node(Initial-State(\text{problem}))}$</td>
</tr>
<tr>
<td>$f\text{-limit} \leftarrow f\text{-Cost(\text{root})}$</td>
</tr>
<tr>
<td>loop do</td>
</tr>
<tr>
<td>$\text{solution, } f\text{-limit} \leftarrow \text{DFS-Contour(\text{root, } f\text{-limit})}$</td>
</tr>
<tr>
<td>if $\text{solution} \neq \text{NULL}$ then return solution</td>
</tr>
<tr>
<td>if $f\text{-limit} = \infty$ then return failure</td>
</tr>
<tr>
<td>end loop</td>
</tr>
</tbody>
</table>

Basically, iterative deepening depth-first-search with depth defined as the f-cost ($f = g + n$):

IDA^*: Evaluation

- complete and optimal (with same restrictions as in A^*)
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values $h(n)$ can assume.

IDA^*: Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values → small number of f-contours to explore → becomes similar to A^*
- complex problems: each f-contour only contain one new node
 - if A^* expands N nodes, IDA^* expands $1 + 2 + .. + N = \frac{N(N+1)}{2} = O(N^2)$
- a possible solution is to have a fixed increment ϵ for the f-limit → solution will be suboptimal for at most ϵ (ϵ-admissible)

Find solution from node root, within the f-cost limit of $f\text{-limit}$.
DFS-Contour returns solution sequence and new f-cost limit.

- if f-cost(root) $> f\text{-limit}$, return fail.
- if root is a goal node, return solution and new f-cost limit.
- recursive call on all successors and return solution and minimum f-limit returned by the calls
- return null solution and new f-limit by default

Similar to the recursive implementation of DFS.
Other Methods: Beam Search

Best-first search with a fixed limited branching factor

- expand the first \(n \) nodes with the best Eval-Fn value, where \(n \) is a small number.

- \(n \) is called the **width of the beam**

- good for domains with continuous time functions (like speech recognition)

- good for domains with huge branching factor (like above)

Iterative Improvement Algorithms

Start with a complete configuration (all variable values assigned, and **optimal**), and **gradually improve** it.

- Hill-climbing (maximize cost function)

- Gradient descent (minimize cost function)

- Simulated Annealing (probabilistic)

Hill-Climbing

- no queue, keep only the best node

- greedy, no back-tracking

- good for domains where **all nodes are solutions**:
 - goal is to **improve** quality of the solution
 - optimization problems

- note that it is different from greedy search, which keeps a node list

Hill-Climbing Strategies

Problems of local maxima, plateau, and ridges:

- try **random-restart**: move to a random location in the landscape and restart search from there

- keep \(n \) best nodes (beam search) *

- parallel search

- simulated annealing *

Hardness of problem depends on the **shape of the landscape**.

*: coming up next
Hill-Climbing: Problems

- Possible solution: simulated annealing – gradually decrease randomness of move to attain globally optimal solution (more on this next week).

Simulated Annealing: Overview

Annealing:
- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:
- basically, hill-climbing with randomness that allows going down as well as the standard up
- randomness (as temperature) is reduced over time

Simulated Annealing (SA)

Goal: minimize the energy E, as in statistical thermodynamics.

For successors of the current node,
- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E > 0$, the move is accepted with probability $P(\Delta E) = e^{-\frac{\Delta E}{kT}}$, where k is the Boltzmann constant and T is temperature.

- randomness is in the comparison: $P(\Delta E) < \text{rand}(0, 1)$

$\Delta E = E_{\text{new}} - E_{\text{old}}$.

The heuristic $h(n)$ or $f(n)$ represents E.

Temperature and $P(\Delta E) < \text{rand}(0, 1)$

Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.

- Higher temperature $T \rightarrow$ higher probability of downward hill-climbing
- Lower $\Delta E \rightarrow$ higher probability of downward hill-climbing
Reduction Schedule

High to low temperature reduction schedule is important:

- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter? linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.

Simulated Annealing Applications

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

Constraint Satisfaction Search

Constraint Satisfaction Problem (CSP):

- **state:** values of a set of **variables**
- **goal:** test if a set of constraints are met
- **operators:** set values of variables
- general search can be used, but specialized solvers for CSP work better

Constraints

- Unary, binary, and higher order constraints: how many variables should simultaneously meet the constraint
- Absolute constraints vs. preference constraints
- Variables are defined in a certain **domain**, which determines the possible set of values, either discrete or continuous.

This is part of a much more complex problem called **constrained optimization problems** in operations research consisting of cost function (either minimize or maximize) and several constraints. Problems can be linear, nonlinear, convex, nonconvex, etc. Straight-forward solutions exist for a limited subclass of these (for example, for linear programming problems can be solved by the simplex method).
CSP: continued

• CSPs include NP-complete problems such as 3-SAT, thus finding the solutions can require exponential time.

• However, constraints can help narrow down the possible options, therefore reducing the branching factor. This is because in CSP, the goal can be decomposed into several constraints, rather than being a whole solution.

• Strategies: backtracking (back up when constraint is violated), forward checking (do not expand further if look-ahead returns a constraint violation). Forward checking is often faster and simple to implement.

Heuristics for Constraint Satisfaction Problems

General strategies for variable selection:

• Most-constrained-variable heuristic (var with fewest possible values)

• Most-constraining-variable heuristic (var involved in the largest number of constraints)

and for value assignment:

• Least-constraining-value heuristic (value that rules out the smallest number of values for vars)

Reducing branching factor vs. leaving freedom for future choices.

Key Points

• best-first-search: definition

• heuristic function $h(n)$: what it is

• greedy search: relation to $h(n)$ and evaluation. How it is different from DFS (time complexity, space complexity)

• A^*: definition, evaluation, conditions of optimality

• complexity of A^*: relation to error in heuristics

• designing good heuristics: several rule-of-thumbs

• IDA^*: evaluation, time and space complexity (worst case)

• beam search concept

• hill-climbing concept and strategies

• simulated annealing: core algorithm, effect of T and ΔE, source of randomness.

Emacs Tips

M-x [Alt][x] or [ESC] then [x], C-x: [CTRL][x]

• M-x shell (run shell within emacs)

• C-p (↑), C-n (↓), C-b (←), C-f (→)

• C-x C-f (load file)

• M-x lisp-mode (environment for editing lisp code)

• C-s (search forward) C-r (reverse search)

• C-g (abort current command in scratch)

• C-k (cut line) C-y (yank, or paste)

• C-x u or M-x undo (undo) ; C-x C-s (save) ; C-x C-c (exit)

Full reference card: http://www.cs.tamu.edu/faculty/choe/courses/02spring/refs
Game Playing

- attractive AI problem because it is **abstract**
- one of the oldest domains in AI
- in most cases, the world state is fully accessible
- computer representation of the situation can be clear and exact
- challenging: uncertainty introduced by the opponent and the complexity of the problem (full search is impossible)
- hard: in chess, branching factor is about 35, and 50 moves by each player $= 35^{100}$ nodes to search
 - compare to 10^{40} possible legal board states
- game playing is more like real life than mechanical search

Games vs. Search Problems

- “Unpredictable” opponent \rightarrow solution is a contingency plan
- Time limits \rightarrow unlikely to find goal, must approximate

Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952–57)
- pruning to reduce costs (McCarthy, 1956)

Types of Games

<table>
<thead>
<tr>
<th></th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfect info</td>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>imperfect info</td>
<td>?</td>
<td>bridge, poker, scrabble</td>
</tr>
</tbody>
</table>
Two-Person Perfect Information Game

initial state: initial position and who goes first
operators: legal moves
terminal test: game over?
utility function: outcome (win:+1, lose:-1, draw:0, etc.)

- two players (MIN and MAX) taking turns to maximize their chances of winning (each turn generates one ply)
- one player’s victory is another’s defeat
- need a strategy to win no matter what the opponent does

Minimax Decision

function Minimax-Decision (game) returns operator
return operator that leads to a child state with the max(Minimax-Value(child state,game))

function Minimax-Value(state,game) returns utility value
if Goal(state), return Utility(state)
else if Max’s move then
→ return max of successors’ Minimax-Value
else
→ return min of successors’ Minimax-Value

Minimax Exercise

MAX

MIN

- generate the whole tree, and apply util function to the leaves
- go back upward assigning utility value to each node
- at MIN node, assign min(successors’ utility)
- at MAX node, assign max(successors’ utility)
- assumption: the opponent acts optimally
Minimax: Evaluation

Branching factor b, max depth m:

- **complete**: if the game tree is finite
- **optimal**: if opponent is optimal
- **time**: b^m
- **space**: bm – depth-first (only when utility function values of all nodes are known!)

Resource Limits

- **Time limit**: as in Chess → can only evaluate a fixed number of paths
- **Approaches**:
 - **evaluation function**: how desirable is a given state?
 - **cutoff test**: depth limit
 - **pruning**

Depth limit can result in the horizon effect: interesting or devastating events can be just over the horizon!

Evaluation Functions

For chess, usually a **linear** weighted sum of feature values:

- $Eval(s) = \sum_i w_i f_i(s)$
- $f_i(s) = (\text{number of white piece } X) - (\text{number of black piece } X)$
- other features: degree of control over the center area
- exact values do not matter: the order of Minimax-Value of the successors matter.

α Cuts

When the current max value is greater than the successor’s min value, don’t look further on that min subtree:

Right subtree can be at most 2, so MAX will always choose the left path regardless of what appears next.
β Cuts

When the current min value is less than the successor's max value, don’t look further on that max subtree:

```
MIN ≤ 3
```

```
3
```

```
MAX ≥ 5
```

```
1 3 5
```

```
MIN
```

```
discard
```

Right subtree can be at least 5, so MIN will always choose the left path regardless of what appears next.

α − β Pruning

- memory of best MAX value α and best MIN value β
- do not go further on any one that does worse than the remembered α and β

α − β Exercise

```
MAX

MIN

MAX
```

α − β Pruning Properties

Cut off nodes that are known to be suboptimal.

Properties:

- pruning does not affect final result
- good move ordering improves effectiveness of pruning
- with perfect ordering, time complexity = $b^{m/2}$
 - doubles depth of search
 - can easily reach 8-ply in chess
- $b^{m/2} = (\sqrt{b})^m$, thus $b = 35$ in chess reduces to $b = \sqrt{35} \approx 6$
Key Points

- Game playing: what are the types of games?
- Minimax: definition, and how to get minmax values
- Minimax: evaluation
- $\alpha - \beta$ pruning: why it saves time

Overview

- formal $\alpha - \beta$ pruning algorithm
- $\alpha - \beta$ pruning properties
- games with an element of chance
- state-of-the-art game playing with AI
- more complex games

$\alpha - \beta$ Pruning: Initialization

Along the path from the beginning to the current state:

- α: best MAX value
 - initialize to $-\infty$
- β: best MIN value
 - initialize to ∞

$\alpha - \beta$ Pruning Algorithm: Max-Value

```
function Max-Value (state, game, $\alpha$, $\beta$) return utility value
  $\alpha$: best MAX on path to state; $\beta$: best MIN on path to state
  if Cutoff(state) then return Utility(state)
  $v \leftarrow -\infty$
  for each $s$ in Successor(state) do
    · $v \leftarrow \text{Max}(\alpha, \text{Min-Value}(s,\text{game},\alpha,\beta))$
    · if $v \geq \beta$ then return $v$ /* CUT!! */
    · $\alpha \leftarrow \text{Max}(\alpha, v)$
  end
  return $v$
```
\(\alpha - \beta \) Pruning Algorithm: Min-Value

\[
\begin{align*}
\text{function } & \text{Min-Value (state, game, } \alpha, \beta) \text{ return utility value} \\
\alpha & : \text{best MAX on path to state} ; \beta: \text{best MIN on path to state} \\
\text{if Cutoff(state) then return Utility (state)} \\
& \quad v \leftarrow \infty \\
\text{for each } s \text{ in Successor(state) do} \\
& \quad v \leftarrow \text{Min}(\beta, \text{Max-Value}(s, \text{game}, \alpha, \beta)) \\
& \quad \text{if } v \leq \alpha \text{ then return } v \quad \text{/* CUT!! */} \\
& \quad \beta \leftarrow \text{Min}(\beta, v) \\
\text{end} \\
\text{return } v
\end{align*}
\]

Ordering is Important for Good Pruning

Games With an Element of Chance

- \textit{chance nodes} need to be included in the minimax tree
- \textit{try to make a move that maximizes the expected value} \(\rightarrow \) \textit{expectimax}
- \textit{expected value of random variable } \(X \):
 \[E(X) = \sum_x xP(x) \]
- \textit{expectimax}
 \[\text{expectimax}(C) = \sum_{i} P(d_i) \max_{s \in S(C,d_i)}(\text{utility}(s)) \]
Game Tree With Chance Element

Design Considerations for Probabilistic Games
- the value of evaluation function, not just the scale matters now! (think of what expected value is)
- time complexity: $b^m n^m$, where n is the number of distinct dice rolls
- pruning can be done if we are careful

State of the Art in Gaming With AI
- Backgammon: Tesauro's Neural Network → top three (1992)
- Othello: smaller search space → superhuman performance
- Checkers: Samuel's Checker Program running on 10Kbyte (1952)

Genetic algorithms can perform very well on select domains.

Hard Games
- $19 \times 19 = 361$ grid: branching factor is huge!
- search methods inevitably fail: need more structured rules
- the bet was high: $1,400,000$ prize for the first computer program to beat a select, 12-year old player. The late Mr. Ing Chang Ki (photo above) put up the money from his personal funds.

Key Points

• formal $\alpha - \beta$ pruning algorithm: know how to apply pruning

• $\alpha - \beta$ pruning properties: evaluation

• games with an element of chance: what are the added elements?
 how does the minmax tree get augmented?