Neural Encoding: Firing Rates and Spike Statistics

- Dayan and Abbott (2001) Chapter 1

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

Background: Dirac δ Function

- Dirac δ function has the following properties:
 \[\int dt \delta(t) = 1 \]
 \[\int dt' \delta(t - t') f(t') = f(t) \]
 and it will be used a lot in the following.

Spike Trains

- Action potentials can be represented as a sequence of spike timing:
 \[t_i, i = 1, 2, 3, ..., n, \text{ and } 0 \leq t_i \leq T \]
- The spike sequence can be represented as:
 \[\rho(t) = \sum_{i=1}^{n} \delta(t - t_i) \]
- For any well-behaved function \(h(t) \),
 \[\sum_{i=1}^{n} h(t - t_i) = \int_{-\infty}^{\infty} d\tau h(\tau) \rho(t - \tau). \]

Firing Rate

"Firing rate" can mean many different quantities.

- Spike count rate is defined as
 \[r = \frac{n}{T} = \frac{1}{T} \int_{0}^{T} d\tau \rho(\tau), \]
 where \(n \) spikes occurred within a time interval of \(0 \leq t \leq T \), which is the entire trial period of a single trial.
- Trial average \(\langle z \rangle \) means the average of the same quantity \(z \) at the same time point over multiple trials.
- Firing rate is defined as
 \[r(t) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} d\tau \langle \rho(\tau) \rangle. \]
- Spiking probability within interval \((t, t + \Delta t)\) is \(r(t) \Delta t \).
Average Neural Response and Firing Rate

- Average neural response can be represented in terms of firing rate:
 \[
 \int d\tau h(\tau) \langle \rho(t - \tau) \rangle = \int d\tau h(\tau) r(t - \tau)
 \]

- Average firing rate over multiple trials can then be defined as:
 \[
 \langle r \rangle = \frac{\langle n \rangle}{T} = \frac{1}{T} \int_0^T d\tau \langle \rho(\tau) \rangle = \frac{1}{T} \int_0^T dt \, r(t).
 \]

Summary of Different Firing Rates

- Single trial, entire trial duration:
 \[
 r = \frac{n}{T} = \frac{1}{T} \int_0^T d\tau \rho(\tau).
 \]

- Multiple trials, short time interval:
 \[
 r(t) = \frac{1}{\Delta t} \int_t^{t+\Delta t} d\tau \langle \rho(\tau) \rangle.
 \]

- Multiple trials, entire trial duration:
 \[
 \langle r \rangle = \frac{\langle n \rangle}{T} = \frac{1}{T} \int_0^T d\tau \langle \rho(\tau) \rangle = \frac{1}{T} \int_0^T dt \, r(t).
 \]

Measuring Firing Rates

- A: spikes
- B: Binned count
- C: Sliding window
- D: Sliding Gaussian kernel
- E: Sliding causal kernel

Measuring Firing Rates w/ Sliding Windows

- Fixed-size sliding window
 \[
 r_{\text{approx}}(t) = \sum_{i=1}^n w(t - t_i), \quad \text{where}
 \]
 \[
 w(t) = \begin{cases}
 1/\Delta t & \text{if } -\Delta t/2 \leq t < \Delta t/2 \\
 0 & \text{otherwise}.
 \end{cases}
 \]
 It can also be written as
 \[
 r_{\text{approx}}(t) = \int_{-\infty}^{\infty} d\tau w(\tau) \rho(t - \tau)
 \]
 which is a linear filter with kernel \(w\).
Measuring Firing Rates w/ Sliding Windows (II)

- The equation below is basically a convolution of spike train with a kernel function:

\[r_{\text{approx}}(t) = \int_{-\infty}^{\infty} d\tau w(\tau) \rho(t - \tau). \]

Compare to the definition of a convolution:

\[(f \ast g)(t) = \int_{-\infty}^{\infty} d\tau f(\tau) g(t - \tau) = \int_{-\infty}^{\infty} d\tau f(t - \tau) g(\tau). \]

- A smooth window function (or kernel) \(w \) can be used (here, a Gaussian):

\[w(\tau) = \frac{1}{\sqrt{2\pi}\sigma_w} \exp\left(-\frac{\tau^2}{2\sigma_w^2}\right), \]

where the std of the Gaussian \(\sigma_w \) controls the window size.

Measuring Firing Rates w/ Sliding Windows (III)

- Instead of looking at both sides of a time point \(t \), we can also look at only spikes in the past.

\[w(\tau) = [\alpha^2 \tau \exp(-\alpha \tau)]_+, \]

where \(1/\alpha \) determines the temporal resolution of the estimate, and

\[[x]_+ = \begin{cases}
 x & \text{if } x \geq 0 \\
 0 & \text{otherwise}
\end{cases} \]

This kernel is called a causal kernel.

- Note that \(w(t - t_i) \) is summed up, so any spikes in the future will have a negative value plugged into \(w(\cdot) \).

Tuning Curve: V1, Gaussian

- Neurons are sensitive to stimulus attributes \(s \); denote by \(s \).

- The neural response tuning curve is a function of \(s \) is

\[\langle r \rangle = f(s). \]

- A typical example is that of V1 neurons (figure above), a Gaussian tuning curve:

\[f(s) = r_{\text{max}} \exp\left(-\frac{1}{2} \left(\frac{s - s_{\text{max}}}{\sigma_f}\right)^2\right). \]

Tuning Curve: M1, cos

- Motor cortex neurons:

\[f(s) = r_0 + (r_{\text{max}} - r_0) \cos(s - s_{\text{max}}), \]

where \(s \) is the arm reach angle, and \(r_0 \) the baseline response and \(r_{\text{max}} \) the max response.

- \(f(s) \) reaches min at \(2r_0 - r_{\text{max}} \), which can be a negative value, which should not exist, so:

\[f(s) = [r_0 + (r_{\text{max}} - r_0) \cos(s - s_{\text{max}})]_+. \]
Tuning Curve: V1, sigmoid

- V1 disparity-sensitive neurons:
 \[f(s) = \frac{r_{\text{max}}}{1 + \exp\left(\frac{(s_{1}/2 - s)}{\Delta s}\right)} . \]
 where \(s \) is disparity and \(s_{1}/2 \) is where disparity response is half the max.

Stimuli that Makes a Neuron to Fire

- Weber’s law: “just noticeable” difference in stimulus, \(\Delta s \), has the property:
 \[\frac{\Delta s}{s} = \text{constant}. \]
- Fechner’s law: Noticeable differences set the scale for perceived stimulus intensities. Perceived intensity of stimulus of absolute intensity \(s \) varies as \(\log s \).
- Zero mean stimulus:
 \[\int_0^T dt \frac{s(t)}{T} = 0 \]
- Averages:
 - Over the same input, across trials: \(\langle \cdot \rangle \).
 - Over different inputs: usually averaged over time as a single long stimulus.

Periodic Stimuli

- Given stimulus \(s(t) \) from interval \(0 \leq t \leq T \), we can replicate with a phase shift of \(\tau \).
 \[
 \int_0^T dt \ h(s(t+\tau)) = \int_0^{T+\tau} dt \ h(s(t)) = \int_0^T dth(s(t)) .
 \]
 Holds when \(s(T + \tau) = s(\tau) \) for any \(\tau \).

Tuning Curves: Spike-Count Variability

- Tuning curves gives average firing rate, but do not describe the spike count variability around the mean firing rate \(\langle r \rangle = f(s) \) across trials.
- Spike-count rate can be from a probability distribution where \(f(s) \) is the mean.
- The variability is considered to be noise:
 - Noise distribution independent of \(f(s) \): additive noise.
 - Noise distribution proportional to \(f(s) \): multiplicative noise.
Spike Triggered Average and Stimulus-Response Correlation

- Spike-triggered average can be represented as:
 \[
 C(\tau) = \frac{1}{\langle n \rangle} \int_0^T dt \langle \rho(t) \rangle s(t-\tau) = \frac{1}{\langle n \rangle} \int_0^T dt r(t)s(t-\tau).
 \]
- The firing-rate stimulus correlation function is:
 \[
 Q_{rs}(\tau) = \frac{1}{T} \int_0^T dt r(t)s(t+\tau).
 \]
 Thus,
 \[
 C(\tau) = \frac{1}{\langle r \rangle} Q_{rs}(-\tau).
 \]

Spike Triggered Average Example

- Neuron of the electrosensory lateral-line lobe of the weakly electric fish *Eigenmannia*.
- Input I, spikes, and spike-triggered average shown.

Stimulus Autocorrelation and White-Noise Stimuli

- White noise stimulus: any one time point of the stimulus is uncorrelated with any other time point.
- Stimulus autocorrelation function:
 \[
 Q_{ss}(\tau) = \frac{1}{T} \int_0^T dt s(t)s(t+\tau).
 \]
- For white noise stimulus,
 \[
 Q_{ss}(\tau) = \begin{cases}
 0 & \text{if } -T/2 < \tau < T/2, \tau \neq 0 \\
 \sigma_s^2 \delta(\tau) & \text{if } \tau = 0
 \end{cases},
 \]
 where σ_s^2 is the stimulus variance.
Multiple-Spike-Triggered Averages

- Instead of a single spike, you can look for stimuli triggering a pattern of spikes.
- Blowfly H1 neuron data are shown above.

Spike-Train Statistics

- The probability density of a random variable z is $p[z]$.
 $$\int_{-\infty}^{\infty} dz \, p[z] = 1.$$
- Probability of z taking a value between a and b:
 $$P[a \leq z \leq b] = \int_a^b dz \, p[z].$$
- For small Δx,
 $$P[x \leq z \leq x + \Delta x] \approx p[x] \Delta x.$$
- Probability of spike sequence given prob. density of spikes $p[t_1, t_2, \ldots, t_n]$ and a short interval Δt:
 $$P[t_1, t_2, \ldots, t_n] = p[t_1, t_2, \ldots, t_n](\Delta t)^n.$$

Stochastic Process

- Point process: stochastic process that generates a sequence of events, like action potentials.
- Probability of an event at time t is usually dependent on all past events.
- Renewal process: current event only depends on immediate past event so that intervals between successive events are independent.
- Poisson process: All events are statistically independent.
 - Homogenous: firing rate is constant over time.
 - Inhomogeneous: firing rate is dependent on time.

Poisson Distribution

- Poisson experiment:
 - Number of events in one time interval is independent of that in another non-overlapping interval.
 - Probability of a single event during a short interval is proportional to the length of the interval, and is independent of events outside that interval.
 - Probability that more than one event can occur in a very short interval is negligible.
- The number X of outcomes in such an experiment (in a specific time interval) has the Poisson distribution.
- Binomial random variable with distribution $b(x; n, p)$ approaches Poisson distribution as $n \to \infty, p \to 0$, and $\mu = np$ stays fixed.

Poisson Distribution (II)

- The number of events \(n \) in a given interval \(T \) is
 \[
P_T[n] = \frac{\exp(-\mu)\mu^n}{n!},
 \]
 where \(\mu \) is the average number of events in that interval. Note, if firing rate is \(r \) and the interval is \(T, \mu = rT \).

- The probability of an ordered sequence of spikes is:
 \[
P[t_1, t_2, ..., t_n] = n!P_T[n]\left(\frac{\Delta t}{T}\right)^n.
 \]

Interspike Interval

- Probability of two successive spikes at \(t_i \) and \(t_{i+1} \) with \(t_i + \tau \leq t_{i+1} + \tau + \Delta t \) is
 - No spike within \(\tau \) (interspike interval) and,
 - Spike within a short period \(\Delta t \) immediately following that.

 \[
P[t_i + \tau \leq t_{i+1} + \tau + \Delta t] = r\Delta t \exp(-r\tau).
 \]

- Mean and variance of interspike interval:

 \[
 \langle \tau \rangle = \int_0^\infty d\tau \, \tau \exp(-r\tau) = \frac{1}{r}.
 \]

 \[
 \sigma_\tau^2 = \int_0^\infty d\tau \, \tau^2 \exp(-r\tau) - \langle \tau \rangle^2 = \frac{1}{r^2}.
 \]

Properties of Poisson Distribution

- Variance and mean of spike count is the same:

 \[
 \sigma_n^2 = \langle n^2 \rangle - \langle n \rangle^2 = rT = \mu.
 \]

- Fano factor:

 \[
 \frac{\sigma_n^2}{\langle n \rangle} = 1
 \]

 is 1 for homogeneous Poisson process.

- Coefficient of variation:

 \[
 CV = \frac{\sigma_n^2}{\langle \tau \rangle},
 \]

 is 1 for homogeneous Poisson process (\(\tau \) is the interspike interval).

Spike-Train Auto- and Cross-correlation Function

- ISI distribution describes \(\tau \) between two successive spikes.

- Generalizing this to times between any two pair of spikes in a spike train is spike-train autocorrelation function:

 \[
 Q_{\rho\rho}(\tau) = \frac{1}{T} \int_0^T dt \langle (\rho(t) - \langle \rho \rangle) (\rho(t + \tau) - \langle \rho \rangle) \rangle.
 \]

 Property:

 \[
 Q_{\rho\rho}(\tau) = Q_{\rho\rho}(-\tau).
 \]

- Do the above across two spike trains to get the crosscorrelation function.
Auto- and Crosscorrelation Histogram

- Lag m.
- Number of spike-pairs with distance within $m \pm 1/2\Delta t$: N_m.
- Normalize N_m by the number of intervals in each bin $n^2\Delta t/T$ and duration of trial T:
 \[
 H_m = \frac{N_m - n^2\Delta t/T}{T}.
 \]

Comparison of Poisson Model and Data

- Fano factor and ISI distribution show close match between Poisson model and experimental data.

Neuronal Response Variability

- Poisson model does not account for neuronal response variability in in vivo (alive animal) experiments as compared to in vitro (in isolated tissue).

The Neural Code

- How is information coded by spikes?
- A matter of intense debate: Rate coding or temporal coding?
- Other perspectives: Independent or dependent spikes?
 - Independent-spike code
 - Correlation code
 - Independent-neuron code
 - Synchrony and oscillations