A Model of the Ventral Visual System Based on Temporal Stability and Local Memory

by Wyss et al. (2006)

CPSC 644

Presented by Yoonsuck Choe

Overview

• Hierarchy of visual areas.
• Learning based on stability over time and leaky-integrator memory.

Results

– Stability over time.
– Response property over different regions in the environment.
– Preference for complex inputs.
– Network dynamics.
– Position reconstruction error.
– Environment manipulation.
– Input scrambling.

Visual Hierarchy

• The neocortex is remarkably homogeneous.
• Are areas in the visual hierarchy intrinsically different or do they develop into such from initially uniform structure?
• Model based on optimal stability and local memory shows:
 – V1-like RF in lowest layer,
 – More complex feature selectivity in intermediate layers, and
 – Global, "place" selectivity in highest layer develops based on small number of principles.

Robotic System

• Khepera robot with video camera (16 × 16) and IR sensors.
• Random translation and rotation of robot within a 31 × 21 cm² arena.
• Avoids obstacle when detected by IR sensor.
Network and Its Activation

- Hierarchical structure, with afferent, lateral (used only for exchanging decorrelation signal), and inter-area feedforward connections (extent of these connections differ).

- Activation is calculated as:

\[
A^l_i(t) = f\left(\sqrt{(\vec{I}(t) \cdot \vec{W}^l)^2 + (\vec{I}(t) \cdot \vec{W}^l)^2}\right)
\]

where \(\vec{I}\) is the main input, \(\vec{W}\) the connection weight, and

\[
f(x) = 1 - \exp(-x^2).
\]

Output of Afferent Level \(l\)

\[
\vec{O}_{i(l)} = \frac{1}{\tau_l} \vec{A}^l_i(t) + \left(1 - \frac{1}{\tau_l}\right) \vec{O}_{i(l-1)}
\]

\[
A^l_i(t) = \frac{A(t) - \langle A \rangle^l_i}{\sqrt{\text{var}_i(A)}}
\]

- Input \(\vec{I}\) in the previous slide can also be from the output \(\vec{O}\) from a lower afferent level \(l\), which is a running average of activation \(\vec{A}^l_i\) of level \(l\).

- This serves as “local memory.”

Learning: Optimization Function

\[
\psi_i = -\sum_j \frac{(A_i^l(t) - A_j^l(t - \tau^l_j))^2_j}{\text{var}_i(A_i^l)} - \beta \sum_{i,j} (\rho^l_{ij})^2 - \Gamma \sum_i \langle A_i^l \rangle,
\]

\[
\rho^l_{ij} = \frac{\text{cov}_l(A_i^l, A_j^l)}{\sqrt{\text{var}_i(A_i^l)\text{var}_j(A_j^l)}}
\]

\(\psi\) maximized using standard gradient ascent on \(\vec{W}\):

- Maximize smoothness in activation over time.
- Minimize correlation across neurons in the same level.
- Maximize sparseness of response.

Stability

- Stability increases and converges in all layers.
Response Property over Regions in the Arena

- Unit response within different locations in the arena (heat map).
- Orientation of robot when units are responding (polar plot).
- Highest level units respond only when the robot is in a small region within the arena.

Properties of Different Levels

- View dependence: change in response dependent on viewing angle when the position of the robot is fixed.
- Size: size of region in which the robot is responsive, normalized by the total area of the arena.
- Compactness: perimeter of the responsive region divided by the perimeter of a disc of equal area.

Preference for Complex Inputs

- Higher level prefers more complex objects.

Network Dynamics

- Maximum stability may be counter-intuitive (it will result in slow change in activation). Does it mean the whole approach will give a slow robot? Use Bayes rule: \(P(x|A) \propto P(A|x)P(x) \).
- Would the network respond fast to fast changing inputs?
- Response time with regular input : response time with fast input = 2.1 ± 1.9.
- Given the response, how well can you predict the position of the robot?
- Higher level becomes more and more position specific.

Environment Manipulation

- Adjusting the shape of the environment (the arena) largely preserves position preference (the position map gets stretched).

Input Scrambling

- Input scrambling causes gradual decrease in response (in level 3).

Discussion (YC)

- What are the relative contribution of the three terms in the optimization function? A systematic study with and without different combinations of these terms may have been helpful.
- How is the stability objective related to all of those resulting properties? Same question for local memory applies.
- Role of leaky-integrator memory is unclear.
- No link to the motor system.
- Motion is too restricted (camera cannot change pitch).
- Relation to Choe and Smith (2006)?
References
