Learning a Class from Examples

- Class C of a “family car”
 - Prediction: Is car x a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:
 - Positive (+) and negative (−) examples
- Input representation:
 - x_1: price, x_2: engine power

Training set X

$$X = \{x^t, r^t\}_{t=1}^N$$

$$r = \begin{cases}
1 & \text{if } x \text{ is positive} \\
0 & \text{if } x \text{ is negative}
\end{cases}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
Class C

\[(p_1 \leq \text{price} \leq p_2) \land (e_1 \leq \text{engine power} \leq e_2)\]

Hypothesis class \(\mathcal{H}\)

\[h(x) = \begin{cases}
1 & \text{if } h \text{ classifies } x \text{ as positive} \\
0 & \text{if } h \text{ classifies } x \text{ as negative}
\end{cases}\]

\[E(h \mid X) = \sum_{t=1}^{N} 1(h(x^t) \neq r^t)\]

S, G, and the Version Space

- Most specific hypothesis, \(S\)
- Most general hypothesis, \(G\)
- \(h \in \mathcal{H}\), between \(S\) and \(G\) is consistent
- and make up the version space (Mitchell, 1997)

VC Dimension

- \(N\) points can be labeled in \(2^N\) ways as +/-.
- \(\mathcal{H}\) shatters \(N\) if there exists \(h \in \mathcal{H}\) consistent for any of these:
 \[\text{VC}(\mathcal{H}) = N\]

An axis-aligned rectangle shatters 4 points only!
Probably Approximately Correct (PAC) Learning

- How many training examples \(N \) should we have, such that with probability at least \(1 - \delta \), \(h \) has error at most \(\varepsilon \)? (Blumer et al., 1989)
- Each strip is at most \(\varepsilon/4 \)
- \(\Pr \) that we miss a strip \(1 - \varepsilon/4 \)
- \(\Pr \) that \(N \) instances miss a strip \((1 - \varepsilon/4)^N \)
- \(\Pr \) that \(N \) instances miss 4 strips \(4(1 - \varepsilon/4)^N \)
- \(4(1 - \varepsilon/4)^N \leq \delta \) and \((1 - x) \leq \exp(-x) \)
- \(4\exp(-\varepsilon N/4) \leq \delta \) and \(N \geq (4/\varepsilon)\log(4/\delta) \)

Noise and Model Complexity

Use the simpler one because
- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance - Occam’s razor)

Multiple Classes, \(C_i, i=1,...,K \)

\(\mathcal{X} = \{x^t,r_i^t\}_{t=1}^N \)

\(r_i^t = \begin{cases}
1 & \text{if } x^t \in C_i \\
0 & \text{if } x^t \in C_j, j \neq i
\end{cases}
\)

Train hypotheses \(h_i(x), i = 1,...,K: \)

\(h_i(x^t) = \begin{cases}
1 & \text{if } x^t \in C_i \\
0 & \text{if } x^t \in C_j, j \neq i
\end{cases} \)

Regression

\(\mathcal{X} = \{x^t,r_i^t\}_{t=1}^N \)

\(r_i^t \in \mathbb{R} \)

\(r_i^t = f(x^t) + \varepsilon \)

\(g(x) = w_1 x + w_0 \)

\(E(g | X) = \frac{1}{N} \sum_{t=1}^{N} [r_i^t - g(x^t)]^2 \)

\(E(w_1,w_0 | X) = \frac{1}{N} \sum_{t=1}^{N} [r_i^t - (w_1 x^t + w_0)]^2 \)
Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about \mathcal{H}
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 1. Complexity of \mathcal{H}, $c(\mathcal{H})$,
 2. Training set size, N,
 3. Generalization error, E, on new data
- As $N \uparrow$, $E \downarrow$
- As $c(\mathcal{H}) \uparrow$, first $E \downarrow$ and then $E \uparrow$

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - Training set (50%)
 - Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data

Dimensions of a Supervised Learner

1. Model: $g(x | \theta)$
2. Loss function: $E(\theta | X) = \sum_i L(r^i, g(x^i | \theta))$
3. Optimization procedure:
 $\theta^* = \arg \min_{\theta} E(\theta | X)$