Model Neurons: Neuroelectronics
(Part I)

- Basic electrical circuits.
- Passive membrane model.
- Single compartment model.
- Integrate-and-fire neurons.
- Hodgkin-Huxley model.
- Synaptic conductances.

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

Electrical Circuits

- Ohm’s law:
 \[V_R = I_R R, \]
 \(V: \) voltage, \(I: \) current, \(R: \) resistence.

- Charge across a capacitor:
 \[CV_C = Q_C \]
 \[C \frac{dV_C}{dt} = \frac{dQ_C}{dt} = I_C, \]
 \(V: \) voltage, \(Q: \) charge, \(I: \) current.

Electrical Circuits: Serial Resistors

Kirchhoff’s current law: At a node, all currents sum to zero (or, sum of incoming = sum of outgoing currents).

- Example C: at node next to \(V_2 \), \(I_1 = I_2 \). Thus:
 \[V_1 - V_2 = I_1 R_1, \quad V_2 - 0 = I_2 R_2 \]
 \[V_1 = I_1 (R_1 + R_2), \quad V_2 = I_2 R_2 = I_1 R_2 \]
 \[V_2 = \frac{V_1 R_2}{R_1 + R_2}. \]

Electrical Circuits: Parallel Resistors

At the node next to \(V \), \(I_e = I_1 + I_2 \).

\[I_1 = \frac{V}{R_1}, \quad I_2 = \frac{V}{R_2} \]
\[I_e = \frac{V}{R_1} + \frac{V}{R_2} = \frac{R_1 + R_2}{R_1 R_2} V \]

Thus, total resistance of parallel resistors is \(\frac{R_1 R_2}{R_1 + R_2} \).
Resistor-Capacitor Circuit (I)

Case A: No external current source: \(I_R + I_C = 0 \).

\[I_R + I_C = \frac{V - 0}{R} + C \frac{dV}{dt} = 0 \]

\[C \frac{dV}{dt} = -\frac{V}{R} \]

which is a homogeneous linear differential equation, and the general solution is (straight-forward integration after separating the variables):

\[V(t) = V(0) \exp(-t/RC) \].

The steady state of the membrane equation is:

\[C \frac{dV}{dt} = \frac{E - V}{R} + I_e = 0, \]

\[V = E + I_e R, \]

which we define as \(V_\infty = E + I_e R \), and the time constant is \(\tau = RC \), which gives the equation in the previous page:

\[V(t) = V_\infty + (V(0) - V_\infty) \exp(-t/\tau). \]

For the solution, first get the general solution \(V_h \) for the homogeneous case and set \(V = V_h \cdot u \), where \(u \) is a dummy variable. Solve for \(V \).

Resistor-Capacitor Circuit (II)

Case B: With external current source: \(I_R + I_C = I_e \).

\[I_R + I_C = \frac{V - E}{R} + C \frac{dV}{dt} = I_e \]

\[C \frac{dV}{dt} = \frac{E - V}{R} + I_e \]

which is a nonhomogeneous linear differential equation, and the general solution is:

\[V(t) = V_\infty + (V(0) - V_\infty) \exp(-t/\tau). \]

Single Compartment Model

- \(V \): membrane potential
- \(r_m \): specific membrane resistance
- \(c_m \): specific membrane capacitance
- \(I_e \): input current
- Conductance: reciprocal of resistance, denoted \(g \)

\[\Delta V = I_e R_m \]

\[R_m = r_m / A \]

\[r_m \approx 1 \text{M}\Omega \cdot \text{mm}^2 \]

\[Q = C_m V \]

\[C_m = c_m A \]

\[c_m \approx 10 \text{nF/mm}^2 \]
Single Compartment Model: Circuit

- Leakage current: \(i_L = \bar{g}_L (V - E_L) \).
- Membrane current: \(i_m = \sum_i g_i (V - E_i) \).
- Input current: \(I_e / A \).
- Current across capacitor: \(c_m \frac{dV}{dt} = I_C \).

Integrate and Fire Models

- Basically an RC circuit with the R-part serving as the leakage:
 \[
 c_m \frac{dV}{dt} = -\bar{g}_L (V - E_L) + \frac{I_e}{A}.
 \]
- Multiplying both sides with \(r_m \) gives
 \[
 (r_m = 1/\bar{g}_L, \tau_m = r_m c_m, R_m = r_m / A):
 \[
 \tau_m \frac{dV}{dt} = E_L - V + R_m I_e.
 \]
 When \(I_e = 0 \), steady state voltage becomes \(V = E_L \), which is the resting membrane potential (\(V_{rest} \)).
- When \(V \) reaches a threshold \(V_{th} \), generate a spike and reset the membrane potential to \(V_{rest} \).

Integrate and Fire Models: Analytic Solution

- Exact solution gives:
 \[
 V(t) = E_L + R_m I_e + (V(0) - E_L - R_m I_e) \exp(-t/\tau_m),
 \]
 which is the same as in page 7.
- \(V_{\infty} = E_L + R_m I_e \), and this value should be greater than the threshold \(V_{th} \) for the neuron to fire at all. Given a fixed \(E_L \) and \(R_m \), the only thing that can change \(V_{\infty} \) is then the input current \(I_e \).
- Given a constant input current \(I_e \) that allows spiking, the spiking frequency can be analytically calculated.
- First, calculate the time to first spike, when \(V(t) = V_{th} \) with \(V(0) = V_{rest} \), and solve for \(t \).
Integrate and Fire Models: Firing Rate

- The calculation comes out to:
 \[t_{isi} = \tau_m \ln \left(\frac{R_m I_e + E_L - V_{rest}}{R_m I_e + E_L - V_{th}} \right). \]

- Since the neuron will fire every \(t_{isi} \) time units, this gives the “inter-spike interval” (or ISI).

- Thus, firing occurs with a period of \(t_{isi} \), and so the firing frequency is \(r_{isi} = 1/t_{isi} \).

- Note again that \(V_{th} < V_\infty = E_L + R_m I_e \) must hold. Otherwise, no spikes.

Integrate and Fire Model: Firing Rate

- Plot shows \(r_{isi} \) dependent on the input current (in INF vs. real data), and real neuron vs. INF firing.

- Without spike adaptation, INF fits the real data well (black dots).

- Spike adaptation means dynamic change in firing rate as a neuron keeps firing.

Integrate and Fire Model

- INF model with a fluctuating driving input is shown.

- The spikes (the long peaks) are shown just as a visualization, and they are not represented in the equation.

- Usually simple numerical integration is used for the simulation (use Taylor series expansion and drop higher-order terms):

 \[
 \tau_m \frac{\Delta V}{\Delta t} = E_L - V(t) + R_m I_e(t) \\
 \Delta V = \tau_m \frac{(E_L - V(t) + R_m I_e(t))}{\Delta t} \\
 V(t + \Delta t) = V(t) + \Delta V.
 \]