Relationship Between Visual Cortical Response Powerlaw and Perceptual Threshold

ECE Computer Engineering & Systems Seminar
September 18, 2012

Yoonsuck Choe, Ph.D.
Department of Computer Science and Engineering
Texas A&M University

What Is Common in These Images?

• In color, natural image, from the Kodak data set, ...
 – What about the brightness intensity histogram?

What Is Similar Then?

• They are very different!
The Visual Cortical Response

- Retina: center-surround filter
- LGN (thalamus): center-surround filter
- Visual cortex: oriented Gabor filter

Simulating Visual Cortical Response: Convolution with Oriented Gabor Filters

- Oriented Gabor filters simulate visual cortical receptive fields.

Visual Cortical Response (Simulated)

- This is (sort of) how the visual cortex responds to these images (Gabor filtering [next slide]).
 - Oriented edges are most prominently detected.
 - Would the response histogram vary as much as the brightness intensity histogram?

Visual Cortical Response Histogram

- The response (called orientation energy E) distributions are similar across the board!
- **Power law** property is observed (this is already a well-known result; Field 1987): $f(x) = 1/x^a$ ($a > 0$).
Yet Another Power Law!

Power law seems to be ubiquitous in nature and in human-made artifacts:
- 957,000 documents returned by Google Scholar!
- Power law phenomena range from www topology, financial market fluctuation, to word frequency and much more (see e.g., Clauset et al. 2009).

However, it is not often asked:
- What use is it?
- What fundamental mechanisms underlie such phenomena?

Part I:
Power Law + Gaussian Baseline = Human Perceptual Threshold

Insight: Comparing the power law distribution with a normal distribution with the same variance can be useful.

- Assumption: normal distribution can be a suitable baseline.

The point L_2 where $h(E)$ becomes greater than $g(E)$ may be important, i.e., orientation energy is suspiciously high.
Can there be a relationship between the threshold of E above which humans see it as salient and the point $L2$?

- **Experiment**: Human participant selected threshold of E so that (1) contours are preserved as much as possible and (2) noise reduced as much as possible.

Further Discoveries: $L2$ and Response Std. Dev.

Further, the raw standard deviation σ of the response distribution is linearly related to $L2$.

- Question: Is there an analytical solution to
 \[a \frac{1}{x^b} = c \times \exp\left(-\frac{x^2}{d}\right) \]
 where the constants a, b, c, and d depend on σ? (more on this later)

Using σ to Estimate Optimal E Threshold

Relating σ back to the human-chosen E threshold gives again a linear relation:

\[T_\sigma = 1.37\sigma - 2176.59. \]

Thus, instead of calculating the histogram, etc., we can simply calculate the raw standard deviation σ to estimate the appropriate E threshold.
Three Quantities

An unexpected correlation found among:

- Human-selected threshold.
- \(L_2 \), point of intersection of response power law and Gaussian baseline.
- \(\sigma \), standard deviation of response power law.

Application: Thresholding Cortical Response

- Original, human-selected, 85-percentile, and \(T_\sigma \).

Thresholding Cortical Response

- \(T_\sigma \) as a threshold gives good results, comparable to humans’ preference.

Thresholding: Limitations of Fixed Percentile

- Original, human-selected, 85-percentile, and \(T_\sigma \).
Thresholding E: Limitations of Global Thresholding

- Original, human-selected, 85-percentile, T_σ, and T_σ local.
- Estimating T_σ at a local scale solves the problem.

Part I: Summary

- Visual cortical response exhibits a power law.
- Comparing the power law to a baseline normal distribution results in a quantity (L^2) that is linearly correlated with human perceptual threshold.
- L^2 is in turn linearly correlated with the standard deviation of the power law.
- Straight-forward application possible (thresholding, salient edge detection):
 - Simple calculation of response variance is enough!

Part II: Why the Gaussian Baseline?

- The results are promising, but why?
- Why is the normal (Gaussian) distribution a reasonable choice as a baseline?
 - Central limit theorem?
 - People commonly use it?
Power Law, Gaussian Dist., vs. Suspicious Coincidence

- What is the relationship between salience defined as super-Gaussian and the conventional definition of suspiciousness (Barlow 1994, 1989)?

\[P(A, B) > P(A)P(B), \]

where \(A \) and \(B \) are pixels in an image.

White-Noise Analysis

- In white-noise images, each pixel is independent, so, given any pixel pair \((A, B) \):

\[P(A, B) = P(A)P(B). \]

- Would we get a power law response?
 - If the Gaussian baseline assumption was correct, since there is no salient edge, the response distribution should be Gaussian.

Visual Response to White Noise Images

- The orientation energy distribution is very close to a Gaussian, especially near the high \(E \) values.
- Thus, the \(T_\sigma \) thresholding will not produce a meaningful threshold.

Use of White Noise Response as a Baseline

- Can we use the white-noise response as a baseline for thresholding \(E \)?: Yes!
- Generate white noise response, and scale it by \(\sigma_h/\sigma_r \) where \(\sigma_h \) and \(\sigma_r \) are the STD in the natural image response and the white noise response.
- Recalculate the response distribution (if necessary).
New Baseline for Salience vs. Humans

New L_2 vs. Human Chosen Threshold ($r = 0.98$)*

- Strong linearity is found between the new L_2 and the human selected threshold.
 - * This is much tighter than the Gaussian baseline ($r = 0.91$)!

Part II: Summary

- Gaussian baseline corresponds to response distribution to white noise images.
- In white noise images, each pixel is independent from the others.
- This relates to the idea of suspicious coincidence by Barlow (1994)
- Threshold derived using the white-noise response distribution is even more accurate than earlier results.

New Baseline for Salience vs. σ

New L_2 vs. σ ($r = 0.91$)

- The same linearity between L_2 and the σ is maintained.

Part III: Deeper Questions
Neural Implementation

- The local (or even global) threshold calculation can be easily implemented in a neural circuit:

$$\sigma^2 = \sum_{i,j} w_{ij} g(V_{ij}),$$

where w_{ij} are connection weights serving as normalization constants, $g(x) = x^2$, and V_{ij} is the V1 response at location i, j.

- The resulting value can be passed through another activation function $f(x) = \sqrt{x}$.

$$f(\sigma^2) = \sqrt{\sigma^2} = \sigma$$

- These are all plausible functions that can be implemented in a biological neural network.

Mathematical/Statistical Implications

Is there an analytical solution to $a \frac{1}{x^b} = c \times \exp(-\frac{x^2}{d})$?

- This leads to another obscure yet surprisingly ubiquitous function called the Lambert W function $W(x)$ which is defined as the inverse of the following function:

$$x = W \exp(W)$$

- The Lambert W function is popping up everywhere: delay differential equations (with applications in population dynamics, economics, control theory), projectile trajectory calculation, voltage/current/resistance in a diode, etc. (see Hayes 2005 for a review)—A déjà vu?

- Speculation: Power law, Gaussian, and Lambert W function are deeply related.

Power Law, Gaussian, and Lambert W function

- Basically, $x = \pm ip \sqrt{W(-q)}$

- How I found out: Wolfram Alpha (Mathematica, prior to that).

Wrap Up
Related Work

- Malik et al. (Malik et al. 1999) used peak values of orientation energy to define boundaries of regions of coherent brightness and texture.
- The non-Gaussian nature of orientation energy (or wavelet response) histograms has also been recognized and utilized, especially in denoising and compression (Simoncelli and Adelson 1996).
- Other kinds of histograms, e.g., spectral histogram by Liu and Wang (2002), or spatial frequency distributions (Field 1987), may be amenable to a similar analysis.

Conclusions

- Visual cortical response shows a power law.
- Power law compared to Gaussian baseline gives accurate predictor for human perceptual threshold.
- Standard deviation of the response is a simple yet powerful approximation.
- Gaussian baseline found to be related to suspicious coincidence.
- Power law, Gaussian baseline, and Lambert W function intricately interrelated.
- **Lesson:** Power law is there for a reason, and it can greatly simplify things downstream.

Acknowledgments

- King Abdullah University of Science and Technology (KAUST)
- Institute for Applied Mathematics and Computational Sciences (IAMCS) at Texas A&M University

References

