A Brief History of Computer Science

CSCE 181, Yoonsuck Choe

- Slides with dark blue background header: Prof. Jennifer Welch’s slides from Spring 2010 CSCE 181.
- Slides with blank background: Yoonsuck Choe

Sources

- Schneider and Gersting, *An Invitation to Computer Science*
 - primary source
- Slides from Prof. John Keyser
- American University’s Computing History Museum
 - http://www.computinghistorymuseum.org/
- Virginia Tech’s History of Computing website:
 - http://ei.cs.vt.edu/~history
- Computer History Museum
 - http://www.computer.org/portal/site/annals/index.jsp
- Andrew Hodges’ website about Alan Turing

More Sources

- Photos taken by Yoonsuck Choe at the Computer History Museum in Mountainview, CA. December 2011.

Early Mathematics & Computation

- Babylonians and Egyptians, > 3000 yrs ago
 - numerical methods for generating tables of square roots, multiplication, trig
 - Applications: navigation, agriculture, taxation
- Greeks, > 3000 yrs ago
 - geometry and logic
- Indians, ~ 600 AD
 - started using placeholders and a decimal number system, similar to modern
 - idea spread to Middle East
- Arabs and Persians ~ 800 AD
 - algorithms
A Famous Arab Mathematician

Abu Jafar Mohammed Ibn Musa Al-Khowarizmi

- In early 800s AD
- Worked at center of learning in Baghdad
- Wrote book: *Hisab Al Jabr Wal-Mugabalah*
- Described how to compute several practical problems, including linear and quadratic equations
- Translated into Latin, spread throughout Europe
- Solidified number system in use now: “Arabic numerals”
- Al Jabr gives us the word “algebra”
- Al-Khowarizmi gives us the word “algorithm”

Early Computing Devices

- **Abacus**
 - About 3000 BC
 - Different types, developed over time
 - Common wire/bead: about 500 BC
 - Some still in use today
- **John Napier’s Bones**
 - 1617: Sticks with numbers on them
 - Use to do 4 basic arithmetic operations
- **William Oughtred’s Slide Rule**
 - 1622: Sticks with logarithmic scale, slide along
 - Much more complex calculations
 - Used well into 20th century (replaced by handheld calculator)

More Early Computing Devices

- **Blaise Pascal**
 - 1642: First numerical calculating machine (addition and subtraction)
- **Gottfried Leibniz**
 - 1673: 4-function mechanical calculator (addition, subtractions, multiplication, division)
- Used cogs and gears
 - Showed mechanization can simplify and speed up numerical calculations

Are These Devices Computers?

- Not considered general-purpose computers
 - They lack
 - memory
 - ability to be programmed
First Programmable Device with Memory

- A loom!
- Used to weave cloth with patterns
- Invented by Joseph Jacquard, France, 1804
- Automated loom using punched cards to create pattern
- Hole in card at a certain place causes change in the weave at corresponding place in the fabric

fig from Wikipedia, Jacquard loom entry

Jacquard Loom

- Memory: the cards
- Programmable: change the cards
- Capture human expertise in a machine
- Target of Luddite movement
- Riots against Industrial Revolution
- Threatened craft guilds

fig from britannica.com

Programmable Loom (1/2)

Programmable Loom (2/2)

Burke (1978)
Charles Babbage & Difference Engine

- England, 1822-1830: Designed and worked on a “Difference Engine” for calculations
- Compute tables of logarithms
- Never finished it: current manufacturing technology not able to provide required precision in cogs and gears
- Others later built one: 7 feet by 11 feet, 3 tons, 4000 moving parts

Charles Babbage & Analytical Engine

- 1833: Designed the “Analytical Engine”
- Could not get funding, since never finished first machine, but fully designed
- to be steam-powered
- This was the first general purpose computer!
- Separate storage from calculation
- Familiar parts:
 - mill <=> ALU
 - store <=> memory
 - operator <=> control unit
 - output <=> input/output
- Used punched cards

Ada Lovelace

- Augusta Ada Byron, Countess of Lovelace
- Daughter of poet Lord Byron
- Friend of Charles Babbage
- Translated, edited, and commented on document describing Babbage’s Analytical Engine
- Described its potential as a general purpose computer
 - Wrote “programs” that could be run on it. As a result, she is often considered the world’s first computer programmer.
 - Wrote about potential uses, even for computer music

Following Babbage

- General purpose computing waited
- Instead, several different specific devices
- Most computational devices still mechanical
- Typewriters (1868)
- Adding machines (1875) and calculators
- Cash registers (1879)
U.S. Census

- Taken every 10 years
- By late 1800s, was becoming more difficult
- 1880 census not tabulated until 1888
- Serious doubt that 1890 census could be finished before time for following census
- Competition held to develop automatic enumeration and tabulation of census data
- A fundamental need for “large-scale” computing

Herman Hollerith

- Herman Hollerith developed tabulating machine
- Developed machines for encoding information on punched cards
- Cards could be sorted and tabulated
- 1890 census completed in 2 years with Hollerith’s machines
- Also saved millions of dollars

Further Development

- Work continued on machines to add, tabulate, record.
- Charles Flint: Computing, Tabulating, Recording (CTR) company, followed up on Hollerith’s work.
- Thomas J. Watson renames CTR to International Business Machines (IBM) in 1924.
- Individual machines were created for each stage of a process
- For example, separate machines to count, sort.
- Most machines encoded information on punched cards.

Encoding Information

- Punched cards were used to store information
- Jacquard’s Loom
- Babbage’s machines
- Hollerith’s tabulating machines
- IBM machines
- Punched cards and punched tape seen as a way of achieving compatibility, transfer of data.
Impact of World War II

Applications of the 1940's:
- ballistics tables
- troop deployment data
- secret codes

Several research projects, funded by military, focused on developing computers on both sides

Howard Aiken & MARK I (ASCC)

- Funded by Navy and IBM, at Harvard
- 1930's and 40's
- general-purpose programmable computer
- used relays, magnets and gears
- used binary values (0/1) instead of decimal (0 to 9)
- used vacuum tubes and electric current (on/off) instead of 10-toothed gears
- memory: 72 numbers
- speed: 23-digit multiplication in 4 seconds

Grace Murray Hopper

- Joined Naval Reserve in 1943
- As Lieutenant, became one of the first programmers of the Mark I
- Eventually reached rank of Admiral
- Noted difficulty of programming in machine language
- Wanted way of specifying programming more naturally
- Created the first compiler, A-O
- Subsequently created other compilers, became strong proponent of compilers/programming languages
- Developed programming languages, notably COBOL (1959)

ENIAC

- "Electronic Numerical Integrator and Computer"
- 1940's
- Motivating application: calculate firing tables (how to aim gun depending on distance, wind speed, temp, etc.)
- Funded by Army at Univ. of Penn.
- John Mauchly & Presper Eckert lead designers
- First fully electronic general-purpose computer
- Vacuum-tube based
- Required rewiring to change program originally
- 100 feet long, 10 feet high, 30 tons
- 1000 times faster than Mark I

ENIAC

- "Electronic Numerical Integrator and Computer"
- 1940's
- Motivating application: calculate firing tables (how to aim gun depending on distance, wind speed, temp, etc.)
- Funded by Army at Univ. of Penn.
- John Mauchly & Presper Eckert lead designers
- First fully electronic general-purpose computer
- Vacuum-tube based
- Required rewiring to change program originally
- 100 feet long, 10 feet high, 30 tons
- 1000 times faster than Mark I

ENIAC

- "Electronic Numerical Integrator and Computer"
- 1940's
- Motivating application: calculate firing tables (how to aim gun depending on distance, wind speed, temp, etc.)
- Funded by Army at Univ. of Penn.
- John Mauchly & Presper Eckert lead designers
- First fully electronic general-purpose computer
- Vacuum-tube based
- Required rewiring to change program originally
- 100 feet long, 10 feet high, 30 tons
- 1000 times faster than Mark I

ENIAC

- "Electronic Numerical Integrator and Computer"
- 1940's
- Motivating application: calculate firing tables (how to aim gun depending on distance, wind speed, temp, etc.)
- Funded by Army at Univ. of Penn.
- John Mauchly & Presper Eckert lead designers
- First fully electronic general-purpose computer
- Vacuum-tube based
- Required rewiring to change program originally
- 100 feet long, 10 feet high, 30 tons
- 1000 times faster than Mark I
Other War-Time Projects

- **Z1: Germany, Konrad Zuse**
 - destroyed during WWII before completed
- **ABC: Iowa State, John Atanasoff & Clifford Berry**
 - solve systems of linear equations
- **Colossus: England, Alan Turing**
 - cracked German Enigma code
 - shrouded in secrecy until 1970's

![German Enigma Machine](http://en.wikipedia.org/wiki/Atanasoff–Berry_Computer)

Alan Turing led the code cracking effort, which contributed greatly to the allied victory in World War II.

Aspect Still Missing…

- All these projects still missing a key feature of modern computers
- Programming these machines was done externally with wires, connectors, plugboards
- Memory stored only data, not instructions
- To change the program, need to rewire
- Ex: 6000 switches on ENIAC

Von Neumann Architecture

- **John Von Neumann**, mathematician, physicist, chemist, computer scientist,… at Princeton
 - worked on ENIAC
 - realized shortcoming
 - Key idea:
 - encode instructions as binary values and store in memory along with data
 - To change program, rewrite sequence of instructions

![Von Neumann Architecture](http://mathdl.maa.org)

![Von Neumann Machine](http://cs.cmu.edu/ref/pgss/lecture/11)
Where Did the Idea Come From?

Andrew Hodges credits Alan Turing’s work on the concept of the Universal Turing Machine. Notion of one machine for all tasks, although it seems obvious to us now, was not at all obvious:

“If it should turn out that the basic logics of a machine designed for the numerical solution of differential equations coincide with the logics of a machine intended to make bills for a department store, I would regard this as the most amazing coincidence that I have ever encountered.”

Howard Aiken, 1956

Storing Programs

- EDVAC – Electronic Discrete Variable Automated Calculator
 - John von Neumann described
 - UPenn, 1950
 - Designed before ENIAC operational
 - Became commercial UNIVAC I, bought by Census Bureau
- EDSAC – Electronic Delay Storage Automated Calculator
 - Maurice Wilkes, Cambridge
 - Based on EDVAC ideas, but completed first (1949)
The Modern Era, 1950 - Present

- Changes more evolutionary than revolutionary
- Focused on making computers faster, smaller, cheaper, more reliable, easier to use
- Conventionally divided into rough "generations"

First Generation, 1950-1959

- First commercial computers
- First symbolic programming languages
- Binary arithmetic
- Vacuum tubes for storage
- Punched card I/O

```
1 + 1 = 10
```

Second Generation, 1959-1965

- Transistors and core memories
- Reduced size and cost, increased reliability
- First disks for mass storage
- First high-level programming languages and programmers
- FORTRAN, COBOL
- First operating systems

```
C AREA OF TRIANGLE
READ INPUT TAPE 5, 501, IA, IB, IC
501 FORMAT (3I5)
C CHECK THAT SUM OF 2 SIDES IS > THIRD SIDE
IF (IA) 777, 777, 701
  701 IF (IB) 777, 777, 702
  702 IF (IC) 777, 777, 703
  703 IF (IA+IB-IC) 777, 777, 704
  ...
```

Transistors, Magnetic Core Memory, and Disks

Magnetic Core: Tiny magnetic rings (∼ 1mm diameter or less) that held 1 bit.
IBM System 360 (Mainframe, 1964)

![IBM System 360](image)

Computer History Museum

Third Generation, 1965-1975

- Integrated circuits
- Components are photographically etched onto pieces of silicon
- Further reduction in size and cost
- First mini-computers
- Desk-sized instead of room-sized
- Time-shared operating systems
- Appearance of software industry
- Introduction of computing standards for compatibility

Cray-1 (Supercomputer, 1974)

![Cray-1](image)

A vector machine super computer by Cray Research.

PDP8 (1965) and VAX 11/780 (1977)

![PDP8 and VAX 11/780](image)

DEC built PDP (UNIX and C were first developed on this), VAX, etc.

Computer History Museum
VT100 Terminal (DEC)

Computer History Museum

Origin of VT100 terminal emulator standard.

Apple I (1976)

Computer History Museum

With Steve “Woz” Wozniak’s signature! (if you remember him only from Dancing with the Stars you’re too young! He’s Apple’s co-founder.)

Fourth Generation, 1975-1985

- Very large scale integrated circuits (VLSI)
- Complete system on one circuit board
- Further reduction in size and cost, increased reliability
- First micro-computer
- Desk-top machine, instead of desk-sized
- Further growth of software industry
- Computer networks
- Graphical user interfaces

Apple II (1977)

Computer History Museum

Ignited the personal computer craze.
Bill Gates and Paul Allen (Microsoft founders) wrote the Basic interpreter for Altair.

First GUI workstation, featuring the mouse.

Steve Jobs’ Happy family

IBM gives in.
Fifth Generation, 1985 - ?

- Ultra-large scale integrated circuits (ULSI)
- More than 1,000,000 elements on one chip
- Super computers and parallel processors
- Laptops and hand-held computers
- Wireless computing
- On-line terabyte storage devices
- Global networks and distributed systems
- Artificial intelligence
- Hi-res graphics, visualization, virtual reality
- Multimedia user interfaces

Palm Pilot (PDA) Prototype (1995)

Computer History Museum

Early commercial success in handheld computing.

Nokia Communicator (1996)

Computer History Museum

First ever smartphone?

1990’s and Beyond

- PC vs. Mac
- Emergence of Linux and Open Source
- Internet and World-Wide Web
- Laptops
- Handhelds
- Smartphones
- Tablets
- Social Network (love it or hate it)
- Super computers, cluster machines, cloud computing.
- Demise of the Moore’s Law.
The Future?

- Speed of light limitation suggests that it won't be possible to continue the exponential increases in speed with a single processor.
- Von Neumann bottleneck of sequentiality.
- Solution is concurrency, doing more than one thing at a time.
- Parallel computing, distributed computing.
- Latest buzzword is "multicore".
- Challenge is how to design algorithms to exploit the multiple cores.

Other Sources

- If you haven't seen the film “Pirates of silicon Valley”, you should definitely take a look.