Neuroevolution

- CSCE 636
- Neuroevolution slides are from Risto Miikkulainen's tutorial at the GECCO 2005 conference, with slight editing.

Today's Main Topic

- Neuroevolution: Evolve artificial neural networks to control behavior of robots and agents.
- Main idea: Mimic the natural process of evolution that gave rise to the brain, the source of intelligence.
 - Population
 - Competition
 - Selection
 - Reproduction and mutation

Why Neuroevolution?

- Neural networks already successful in many domains.
- However, in certain domains, it is hard to fit the existing framework and learning algorithms.
- Hard domains: fin-less rocket control, robotic agent control, etc.

Evolving Neural Networks

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin
http://www.cs.utexas.edu/users/risto
Outline

• Basic neuroevolution techniques
• Advanced techniques
 – E.g. combining learning and evolution
• Extensions to applications
• Application examples
 – Control, Robotics, Artificial Life, Games

Neuroevolution Decision Strategies

• Input variables describe the state
• Output variables describe actions
• Network between input and output
 – Hidden nodes
 – Weighted connections
• Execution:
 – Numerical activation of input
 – Nonlinear weighted sums
• Performs a nonlinear mapping
 – Memory in recurrent connections
• Connection weights and structure evolved

Neuroevolution Basics

• A single chromosome encodes a full neural network.
• Each gene, a single bit (or a real number), maps to a connection weight in the neural network.

Neuroevolution Basics: Operations

• Cross-over.
• Mutation.
Neuroevolution Basics: Cross-Over in Detail

Cross-over of two individuals produces two offsprings with a mixed heritage.

Conventional Neuroevolution (CNE)
- Evolving connection weights in a population of networks
 - Chromosomes are strings of weights (bits or real)
 - E.g. 10010110101100101111001
 - Usually fully connected, fixed topology
 - Initially random

Conventional Neuroevolution (2)
- Each NN evaluated in the task
 - Good NN reproduce through crossover, mutation
 - Bad thrown away
 - Over time, NNs evolve that solve the task
- Natural mapping between genotype and phenotype
- GA and NN are a good match

Problems with CNE
- Evolution converges the population (as usual with EAs)
 - Diversity is lost; progress stagnates
- Competing conventions
 - Different, incompatible encodings for the same solution
- Too many parameters to be optimized simultaneously
 - Thousands of weight values at once
Advanced NE 1: Evolving Neurons

- Evolving individual neurons to cooperate in networks \(^1\),\(^2\),\(^22\),\(^24\) (Agogino GECCO’05)
- E.g. Enforced Sub-Populations (ESP ?)
 - Each (hidden) neuron in a separate subpopulation
 - Fully connected; weights of each neuron evolved
 - Populations learn compatible subtasks

Advanced NE 2: Evol. Subpopulations

- Evolution encourages diversity automatically
 - Good networks require different kinds of neurons
- Evolution discourages competing conventions
 - Neurons optimized for compatible roles
- Large search space divided into subtasks
 - Optimize compatible neurons

Advanced NE 3: Evolving Topologies

- Optimizing connection weights and network topology \(^1\),\(^11\),\(^40\)
- E.g. Neuroevolution of Augmenting Topologies (NEAT \(^27\),\(^29\))
- Based on Complexification
- Of networks:
 - Mutations to add nodes and connections
- Of behavior:
 - Elaborates on earlier behaviors

How Can We Complexify?

- Can optimize not just weights but also topologies
- Solution: Start with minimal structure and complexify \(^37\)
- Can search a very large space of configurations!
How Can Crossover be Implemented?

- Problem: Structures do not match

- Solution: Utilize historical markings

Genome (Genotype)

<table>
<thead>
<tr>
<th>Node</th>
<th>Genes</th>
<th>Connect. Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network (Phenotype)

1. How can Innovation Survive?

- Problem: Innovations have initially low fitness

- Solution: Speciate the population
 - Innovations have time to optimize
 - Mitigates competing conventions
 - Promotes diversity

Further Neuroevolution Techniques

- Incremental evolution\(^{13,33,39}\)
- Utilizing population culture\(^{2,18}\)
- Evolving ensembles of NNs\(^{16,23,36}\) (Pardoe GECCO’05)
- Evolving neural modules\(^{25}\)
- Evolving transfer functions and learning rules\(^{4,26}\)
- Combining learning and evolution

Neuroevolution Applications

- Evolving composite decision makers\(^{36}\)
- Evolving teams of agents\(^{3,28,41}\)
- Utilizing coevolution\(^{30}\)
- Real-time neuroevolution\(^{28}\)
- Combining human knowledge with evolution\(^{8}\)
Applications to Control

- Pole-balancing benchmark
 - Originates from the 1960s
 - Original 1-pole version too easy
 - Several extensions: acrobat, jointed, 2-pole, particle chasing
- Good surrogate for other control tasks
 - Vehicles and other physical devices
 - Process control

Competitive Coevolution

- Evolution requires an opponent to beat
- Such opponents are not always available
- Co-evolve two populations to outdo each other
- How to maintain an arms race?

Competitive Coevolution with NEAT

- Complexification elaborates instead of alters
 - Adding more complexity to existing behaviors
- Can establish a coevolutionary arms race
 - Two populations continually outdo each other
 - Absolute progress, not just tricks

Robot Duel Domain

- Two Khepera-like robots forage, pursue, evade
 - Collect food to gain energy
 - Win by crashing to a weaker robot
Early Strategies

- Crash when higher energy
- Collect food by accident
- DEMO

Mature Strategies

- Collect food to gain energy
- Avoid moving to lose energy
- Standoff: Difficult to predict outcome
- DEMO

Sophisticated Strategy

- “Fake” a move up, force away from last piece
- Win by making a dash to last piece
- Complexification \(\rightarrow\) arms race
- DEMO

Applications to Games

- Good research platform
 - Controlled domains, clear performance, safe
 - Economically important; training games possible
- Board games: beyond limits of search
 - Evaluation functions in checkers, chess\(^{5,9,10}\)
 - Filtering information in go, othello\(^{20,31}\)
Discovering Novel Strategies in Othello

- Players take turns placing pieces
- Each move must flank opponent’s piece
- Surrounded pieces are flipped
- Player with most pieces wins

Evolving Against a Random Player

- Network sees the board, suggests moves by ranking
- Networks maximize piece counts throughout the game
- A positional strategy emerges
- Achieved 97% winning percentage

Evolving Against an \(\alpha - \beta\) Program

- Iago’s positional strategy destroyed networks at first
- Evolution turned low piece count into an advantage
- Mobility strategy emerged!
- Achieved 70% winning percentage
Example game

- Black’s positions strong, but mobility weak
- White (the network) moves to f2
- Black’s available moves b2, g2, and g7 each will surrender a corner
- The network wins by forcing a bad move

Discovering Novel Strategies

- Neuroevolution discovered a strategy novel to us
- “Evolution works by tinkering”
 - So does neuroevolution
 - Initial disadvantage turns into novel advantage

Future Challenge: Utilizing Knowledge

- Given a problem, NE discovers a solution by exploring
 - Sometimes you already know (roughly) what works
 - Sometimes random initial behavior is not acceptable
- How can domain knowledge be utilized?
 - By incorporating rules (Yong GECCO’05)
 - By learning from examples

Numerous Other Applications

- Creating art, music
- Theorem proving
- Time-series prediction
- Computer system optimization
- Manufacturing optimization
- Process control optimization
- Etc.
Conclusion

- Neuroevolution, mimicking the natural process of evolution, is an effective strategy for constructing complex and useful behavior.
- Neuroevolution often performs well for reinforcement learning tasks.
- Analyzing the resulting network is a challenge.

References

