Search and Game Playing

- CSCE 315 Programming Studio

Overview

- Search problems: definition
- Example: 8-puzzle
- General search
- Evaluation of search strategies
- Strategies: breadth-first, uniform-cost, depth-first
- More uninformed search: depth-limited, iterative deepening, bidirectional search

Search Problems: Definition

Search = < initial state, operators, goal states >

- **Initial State**: description of the current situation as given in a problem
- **Operators**: functions from any state to a set of successor (or neighbor) states
- **Goal**: subset of states, or test rule

Variants of Search Problems

Search = < state space, initial state, operators, goal states, path cost >

- **State space**: set of all possible states reachable from the current initial state through repeated application of the operators (i.e. path).

Search = < initial state, operators, goal states, path cost >

- **Path cost**: find the best solution, not just a solution. Cost can be many different things.
Types of Search

- Uninformed: systematic strategies
- Informed: Use domain knowledge to narrow search
- Game playing as search: minimax, state pruning, probabilistic games

Search State

State as Data Structure
- examples: variable assignment, properties, order in list, bitmap, graph (vertex and edges)
- captures all possible ways world could be
- typically static, discrete (symbolic), but does not have to be

Choosing a Good Representation
- concise (keep only the relevant features)
- explicit (easy to compute when needed)
- embeds constraints

Operators

Function from state to subset of states
- drive to neighboring city
- place piece on chess board
- add person to meeting schedule
- slide tile in 8-puzzle

Characteristics
- often requires instantiation (fill in variables)
- encode constraints (only certain operations are allowed)
- generally discrete: continuous parameters → infinite branching

Goals: Subset of states or test rules

Specification:
- set of states: enumerate the eligible states
- partial description: e.g. a certain variable has value over \(x \).
- constraints: or set of constraints. Hard to enumerate all states matching the constraints, or very hard to come up with a solution at all (i.e. you can only verify it; P vs. NP).

Other considerations:
- space, time, quality (exact vs. approximate trade-offs)
An Example: 8-Puzzle

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

→ ... ↑ ... ← ... ↓

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- **State**: location of 8 number tiles and one blank tile
- **Operators**: blank moves left, right, up, or down
- **Goal test**: state matches the configuration on the right (see above)
- **Path cost**: each step cost 1, i.e. path length, or search tree depth

Generalization: 15-puzzle, ..., \((N^2 - 1)\)-puzzle

Possible state representations in LISP (0 is the blank):
- \((0 \ 2 \ 3 \ 1 \ 8 \ 4 \ 7 \ 6 \ 5)\)
- \(((0 \ 2 \ 3) \ (1 \ 8 \ 4) \ (7 \ 6 \ 5))\)
- \(((0 \ 1 \ 7) \ (2 \ 8 \ 6) \ (3 \ 4 \ 5))\)
- or use the `make-array`, `aref` functions.

How easy to: (1) compare, (2) operate on, and (3) store (i.e. size).

General Search Algorithm

Pseudo-code:

```plaintext
function General-Search (problem, Que-Fn)
  node-list := initial-state
  loop begin
    // fail if node-list is empty
    if Empty(node-list) then return FAIL
    // pick a node from node-list
    node := Get-First-Node(node-list)
    // if picked node is a goal node, success!
    if (node == goal) then return as SOLUTION
    // otherwise, expand node and enqueue
    node-list := Que-Fn(node-list, Expand(node))
  loop end
```

GOAL!
Evaluation of Search Strategies

- time-complexity: how many nodes expanded so far?
- space-complexity: how many nodes must be stored in node-list at any given time?
- completeness: if solution exists, guaranteed to be found?
- optimality: guaranteed to find the best solution?

Breadth First Search

- node visit order (goal test): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- queuing function: enqueue at end (add expanded node at the end of the list)
- Important: A node taken out of the node list for inspection counts as a single visit!

BFS: Expand Order

Evolution of the queue (bold= expanded and added children):
1. [1]: initial state
2. [2][3]: dequeue 1 and enqueue 2 and 3
3. [3][4][5]: dequeue 2 and enqueue 4 and 5
4. [4][5][6][7]: all depth 3 nodes
... 8. [8][9][10][11][12][13][14][15]: all depth 4 nodes

BFS: Evaluation

branching factor b, depth of solution d:
- complete: it will find the solution if it exists
- time: $1 + b + b^2 + ... + b^d$
- space: $O(b^{d+1})$ where d is the depth of the shallowest solution
- space is more problem than time in most cases (p 75, figure 3.12).
- time is also a major problem nonetheless (same as time)
Depth First Search

- node visit order (goal test): 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15
- queuing function: enqueue at left (stack push; add expanded node at the beginning of the list)

DFS: Expand Order

Evolution of the queue (bold = expanded and added children):
1. [1] : initial state
2. [2][3] : pop 1 and push expanded in the front
3. [4][5] [3] : pop 2 and push expanded in the front
4. [8][9] [5] [3] : pop 4 and push expanded in the front

DFS: Evaluation

branching factor b, depth of solutions d, max depth m:
- incomplete: may wander down the wrong path
- time: $O(b^m)$ nodes expanded (worst case)
- space: $O(bm)$ (just along the current path)
- good when there are many shallow goals
- bad for deep or infinite depth state space

Key Points

- Description of a search problem: initial state, goals, operators, etc.
- Considerations in designing a representation for a state
- Evaluation criteria
- BFS, DFS: time and space complexity, completeness
- When to use one vs. another
- Node visit orders for each strategy
- Tracking the stack or queue at any moment
Depth Limited Search (DLS): Limited Depth DFS

- Node visit order for each depth limit l:
 1. $(l = 1)$; 1 2 3 $(l = 2)$; 1 2 4 5 3 6 7 $(l = 3)$;
- Queuing function: enqueue at front (i.e. stack push)
- Push the depth of the node as well:
 $\langle depth, node \rangle$

DLS: Evaluation

Branching factor b, depth limit l, depth of solution d:

- Complete: if $l \geq d$
- Time: $O(b^l)$ nodes expanded (worst case)
- Space: $O(bl)$ (same as DFS, where $l = m$ (m: max depth of tree in DFS)
- Good if solution is within the limited depth.
- Non-optimal (same problem as in DFS).

DLS: Expand Order

Evolution of the queue ([bold]=expanded and then added):
$\langle depth, node \rangle$; Depth limit = 3

1. $[(d1,1)]$: initial state
2. $[(d2,2)][(d2,3)]$: pop 1 and push 2 and 3
3. $[(d3,4)][(d3,5)][(d2,3)]$: pop 2 and push 4 and 5
4. $[(d3,5)][(d2,3)]$: pop 4, cannot expand it further
5. $[(d2,3)]$: pop 5, cannot expand it further
6. $[(d3,6)][(d3,7)]$: pop 3, and push $6, 7$

Iterative Deepening Search: DLS by Increasing Limit

- Node visit order:
 1 : 1 2 3; 1 2 4 5 3 6 7; 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15; ...
- Revisits already explored nodes at successive depth limit
- Queuing function: enqueue at front (i.e. stack push)
- Push the depth of the node as well: $\langle depth, node \rangle$
IDS: Expand Order

Basically the same as DLS: Evolution of the queue (bold = expanded and then added): \((\text{<depth>}, \text{<node>})\); e.g. Depth limit = 3
1. \([(d1,1)]\) : initial state
2. \([(d2,2)]\) : pop 1 and push 2 and 3
3. \([(d3,4)]\) : pop 2 and push 4 and 5
4. \([(d3,5)]\) : pop 4, cannot expand it further
5. \([(d2,3)]\) : pop 5, cannot expand it further
6. \([(d3,6)]\) : pop 3, and push 6, 7

IDS: Evaluation

branching factor \(b\), depth of solution \(d\):
- complete: cf. DLS, which is conditionally complete
- time: \(O(b^d)\) nodes expanded (worst case)
- space: \(O(bd)\) (cf. DFS and DLS)
- optimal!: unlike DFS or DLS
- good when search space is huge and the depth of the solution is not known (*)

Bidirectional Search (BDS)

- Search from both initial state and goal to reduce search depth.
- \(O(b^{d/2})\) of BDS vs. \(O(b^{d+1})\) of BFS.

BDS: Considerations

1. how to back trace from the goal?
2. successors and predecessors: are operations reversible?
3. are goals explicit?: need to know the goal to begin with
4. check overlap in two branches
5. BFS? DFS? which strategy to use? Same or different?
BDS Example: 8-Puzzle

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- Is it a good strategy?
- What about Chess? Would it be a good strategy?
- What kind of domains may be suitable for BDS?

Avoiding Repeated States

Repeated states can be devastating in search problems.

- Common cases: problems with reversible operators → search space becomes infinite
- One approach: find a spanning tree of the graph

Avoiding Repeated States: Strategies

- Do not return to the node's parent
- Avoid cycles in the path (this is a huge theoretical problem in its own right)
- Do not generate states that you generated before: use a hash table to make checks efficient

How to avoid storing every state? Would using a short signature (or a checksum) of the full state description help?

Key Points

- DLS, IDS, BDS search order, expansions, and queuing
- DLS, IDS, BDS evaluation
- DLS, IDS, BDS: suitable domains
- Repeated states: why removing them is important
Overview

- Best-first search
- Heuristic function
- Greedy best-first search
- A^*
- Designing good heuristics
- IDA^*
- Iterative improvement algorithms
 1. Hill-climbing
 2. Simulated annealing

Informed Search

From domain knowledge, obtain an evaluation function.

- best-first search: order nodes according to the evaluation function value
- greedy search: minimize estimated cost for reaching the goal – fast, but incomplete and non-optimal.
- A^*: minimize $f(n) = g(n) + h(n)$, where $g(n)$ is the current path cost from start to n, and $h(n)$ is the estimated cost from n to goal.

Best First Search

```c
function Best-First-Search (problem, Eval-Fn)
    Queuing-Fn ← sorted list by Eval-Fn(node)
    return General-Search(problem, Queuing-Fn)
```

- The queuing function queues the expanded nodes, and sorts it every time by the Eval-Fn value of each node.
- One of the simplest Eval-Fn: estimated cost to reach the goal.

Heuristic Function

- $h(n) =$ estimated cost of the cheapest path from the state at node n to a goal state.
- The only requirement is the $h(n) = 0$ at the goal.
- Heuristics means “to find” or “to discover”, or more technically, “how to solve problems” (Polya, 1957).
Heuristics: Example

- $h_{SLD}(n)$: straight line distance (SLD) is one example.

- Start from A and Goal is I: C is the most promising next step in terms of $h_{SLD}(n)$, i.e. $h(C) < h(B) < h(F)$

- Requires some knowledge:
 1. coordinates of each city
 2. generally, cities toward the goal tend to have smaller SLD.

Greedy Best-First Search

- Best-first with heuristic function $h(n)$

Greedy Best-First Search: Evaluation

Branching factor b and max depth m:

- Fast, just like Depth-First-Search: single path toward the goal.
- Time: $O(b^m)$
- Space: same as time – all nodes are stored in sorted list(!), unlike DFS
- Incomplete, just like DFS
- Non-optimal, just like DFS

Total Path Cost = 450
A*: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

- \(f(n) = g(n) + h(n) \)
- \(f(n) \): estimated cost to goal through node \(n \)
- provably complete and optimal!

restrictions: \(h(n) \) should be an **admissible heuristic**

admissible heuristic: one that never overestimate the actual cost of the best solution through \(n \)

NOTE: \(f(n) \) can be different depending on the path taken to \(f(n) \) if multiple paths exists from root to \(n \)!

Behavior of A* Search

- usually, the \(f \) value never decreases along a given path:
 - monotonicity
- in case it is nonmonotonic, i.e. \(f(Child) < f(Parent) \), make this adjustment:
 \[f(Child) = \max(f(Parent), g(Child) + h(Child)) \]
- this is called **pathmax**

A* Search

function \(A^* - \text{Search}(\text{problem}) \)

\[g(n) = \text{current cost up till } n \]
\[h(n) = \text{estimated cost from } n \text{ to goal} \]

return Best-First-Search(\text{problem}, g + h)

- Condition: \(h(n) \) must be an **admissible heuristic function**!
- \(A^* \) is optimal!
Optimality of A^*

G_2: suboptimal goal in the node-list.
n: unexpanded node on a shortest path to goal G_1

\bullet $f(G_2) = g(G_2)$ since $h(G_2) = 0$
\bullet $> g(G_1)$ since G_2 is suboptimal
\bullet $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion.

Lemma to Optimality of A^*

Lemma: A^* expands nodes in order of increasing $f(n)$ value.

\bullet Gradually adds f-contours of nodes (cf. BFS adds layers).
\bullet The goal state may have a f value: let’s call it f^*
\bullet This means that all nodes with $f < f^*$ will be expanded!

Optimality of A^*: Example

A → C → E → C → A → F → ...

complex path cost

1. Expansion of parent allowed: search fails at nodes B, D, and E.
2. Expansion of parent disallowed: paths through nodes B, D, and E with have an inflated path cost $g(n)$, thus will become nonoptimal.

Complexity of A^*

A^* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

\bullet condition for subexponential growth:

$|h(n) - h^*(n)| \leq O(\log h^*(n))$,

where $h^*(n)$ is the true cost from n to the goal.

\bullet that is, error in the estimated cost to reach the goal should be less than even linear, i.e. $< O(h^*(n))$.

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. $\geq O(h^*(n)) > O(\log h^*(n))$.

45

46

47

48
Error in heuristic: $|h(n) - h^*(n)|$.

For most heuristics, the error is at least linear.

For A^* to have subexponential growth, the error in the heuristic should be on the order of $O(\log h^*(n))$.

A* Evaluation

- Complete: unless there are infinitely many nodes with $f(n) \leq f(G)$
- Time complexity: exponential in (relative error in $h \times$ length of solution)
- Space complexity: same as time (keep all nodes immediately outside of current f-contour in memory)
- Optimal

Heuristic Functions: Example

Eight puzzle

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance (city block distance)

$h_1(n) = 7$ (not counting the blank tile)
$h_2(n) = 2+3+3+2+4+2+0+2 = 18$

* Both are admissible heuristic functions.
Dominance

If \(h_2(n) \geq h_1(n) \) for all \(n \) and both are admissible, then we say that \(h_2(n) \) dominates \(h_1(n) \), and is better for search.

Typical search costs for depth \(d = 14 \):

- Iterative Deepening: 3,473,941 nodes expanded
- \(A^*(h_1) \): 539 nodes
- \(A^*(h_2) \): 113 nodes

Observe that in \(A^* \), every node with \(f < f^* \) is expanded. Since \(f = g + h \), nodes with \(h(n) < f^* - g(n) \) will be expanded, so larger \(h \) will result in less nodes being expanded.

- \(f^* \) is the \(f \) value for the optimal solution path.

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:

- allow tiles to move anywhere \(\rightarrow h_1(n) \)
- allow tiles to move to any adjacent location \(\rightarrow h_2(n) \)

For traveling:

- allow traveler to travel by air, not just by road: SLD

Other Heuristic Design

- Use composite heuristics: \(h(n) = \max(h_1(n), ..., h_m(n)) \)

- Use statistical information: random sample \(h \) and true cost to reach goal. Find out how often \(h \) and true cost is related.

Iterative Deepening \(A^* : IDA^* \)

\(A^* \) is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain \(f \) bound, and gradually increase the \(f \) bound until a solution is found.
- Popular use include path finding in game AI.
IDA: Evaluation

- complete and optimal (with same restrictions as in A*)
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values \(h(n) \) can assume.

IDA: Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values \(\rightarrow \) small number of \(f \)-contours to explore \(\rightarrow \) becomes similar to A*
- complex problems: each \(f \)-contour only contain one new node
 - if A* expands \(N \) nodes,
 - \(IDA^* \) expands
 \[
 1 + 2 + \ldots + N = \frac{N(N+1)}{2} = O(N^2)
 \]
 - a possible solution is to have a fixed increment \(\epsilon \) for the \(f \)-limit
 \(\rightarrow \) solution will be suboptimal for at most \(\epsilon \) (\(\epsilon \)-admissible)

IDA

function IDA(problem)

- \(root \leftarrow \text{Make-Node}(\text{Initial-State}(\text{problem})) \)
- \(f\text{-limit} \leftarrow f\text{-Cost}(root) \)

loop do

- \(solution, f\text{-limit} \leftarrow \text{DFS-Contour}(root, f\text{-limit}) \)
- if \(solution \neq \text{NULL} \) then return \(solution \)
- if \(f\text{-limit} = \infty \) then return failure

end loop

Basically, iterative deepening depth-first-search with depth defined as the \(f \)-cost \((f = g + n) \):

DFS-Contour(root, \(f\text{-limit} \))

Find solution from node \(root \), within the \(f \)-cost limit of \(f\text{-limit} \).

DFS-Contour returns solution sequence and new \(f \)-cost limit.

- if \(f\text{-cost}(root) > f\text{-limit} \), return fail.
- if \(root \) is a goal node, return solution and new \(f \)-cost limit.
- recursive call on all successors and return solution and minimum \(f\text{-limit} \) returned by the calls
- return null solution and new \(f\text{-limit} \) by default

Similar to the recursive implementation of DFS.
Iterative Improvement Algorithms

Start with a complete configuration (all variable values assigned, and optimal), and gradually improve it.

- Hill-climbing (maximize cost function)
- Gradient descent (minimize cost function)
- Simulated Annealing (probabilistic)

Hill-Climbing

- no queue, keep only the best node
- greedy, no back-tracking
- good for domains where all nodes are solutions:
 - goal is to improve quality of the solution
 - optimization problems
- note that it is different from greedy search, which keeps a node list

Hill-Climbing Strategies

Problems of local maxima, plateau, and ridges:

- try random-restart: move to a random location in the landscape and restart search from there
- parallel search
- simulated annealing *

Hardness of problem depends on the shape of the landscape.
*: coming up next

Hill-Climbing and Gradient Search: Problems

Possible solution: simulated annealing – gradually decrease randomness of move to attain globally optimal solution (more on this next week).
Simulated Annealing: Overview

Annealing:
- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:
- basically, hill-climbing with randomness that allows going down as well as the standard up
- randomness (as temperature) is reduced over time

Simulated Annealing (SA)

Goal: minimize (not maximize) the energy E, as in statistical thermodynamics.

For successors of the current node,
- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E > 0$, the move is accepted with probability $P(\Delta E) = e^{-\Delta E/kT}$, where k is the Boltzmann constant and T is temperature.

- randomness is in the comparison: $P(\Delta E) < \text{rand}(0,1)$

$\Delta E = E_{\text{new}} - E_{\text{old}}$.

The heuristic $h(n)$ or $f(n)$ represents E.

Temperature and $P(\Delta E) < \text{rand}(0,1)$

Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.

- Higher temperature T → higher probability of downward hill-climbing
- Lower ΔE → higher probability of downward hill-climbing

T Reduction Schedule

High to low temperature reduction schedule is important:
- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter? linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.
Simulated Annealing Applications

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

Key Points

- best-first-search: definition
- heuristic function $h(n)$: what it is
- greedy search: relation to $h(n)$ and evaluation. How it is different from DFS (time complexity, space complexity)
- A^*: definition, evaluation, conditions of optimality
- complexity of A^*: relation to error in heuristics
- designing good heuristics: several rule-of-thumbs
- IDA^*: evaluation, time and space complexity (worst case)
- hill-climbing concept and strategies
- simulated annealing: core algorithm, effect of T and ΔE, source of randomness.

Game Playing

- attractive AI problem because it is abstract
- one of the oldest domains in AI
- in most cases, the world state is fully accessible
- computer representation of the situation can be clear and exact
- challenging: uncertainty introduced by the opponent and the complexity of the problem (full search is impossible)
- hard: in chess, branching factor is about 35, and 50 moves by each player $= 35^{100}$ nodes to search
 - compare to 10^{40} possible legal board states
- game playing is more like real life than mechanical search
Games vs. Search Problems

“Unpredictable” opponent → solution is a contingency plan

Time limits → unlikely to find goal, must approximate

Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952–57)
- pruning to reduce costs (McCarthy, 1956)

Types of Games

<table>
<thead>
<tr>
<th></th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfect info</td>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>imperfect info</td>
<td>battle ship</td>
<td>bridge, poker, scrabble</td>
</tr>
</tbody>
</table>

Two-Person Perfect Information Game

- initial state: initial position and who goes first
- operators: legal moves
- terminal test: game over?
- utility function: outcome (win:+1, lose:-1, draw:0, etc.)

- two players (MIN and MAX) taking turns to maximize their chances of winning (each turn generates one ply)
- one player’s victory is another’s defeat
- need a strategy to win no matter what the opponent does

Minimax: Strategy for Two-Person Perfect Info

- generate the whole tree, and apply util function to the leaves
- go back upward assigning utility value to each node
- at MIN node, assign min(successors’ utility)
- at MAX node, assign max(successors’ utility)
- assumption: the opponent acts optimally
Minimax Decision

```plaintext
function Minimax-Decision (game) returns operator
    return operator that leads to a child state with the max(Minimax-Value(child state,game))
```

Minimax-Value(state,game) returns utility value

```plaintext
if Goal(state), return Utility(state)
else if Max's move then
    return max of successors' Minimax-Value
else
    return min of successors' Minimax-Value
```

Minimax: Evaluation

Branching factor b, max depth m:

- **complete**: if the game tree is finite
- **optimal**: if opponent is optimal
- **time**: b^m
- **space**: bm – depth-first (only when utility function values of all nodes are known!)

Resource Limits

- **Time limit**: as in Chess → can only evaluate a fixed number of paths
- **Approaches**:
 - **evaluation function**: how desirable is a given state?
 - **cutoff test**: depth limit
 - **pruning**

Depth limit can result in the **horizon effect**: interesting or devastating events can be just over the horizon!
Evaluation Functions

For chess, usually a linear weighted sum of feature values:

- \(\text{Eval}(s) = \sum_i w_i f_i(s) \)
- \(f_i(s) = (\text{number of white piece X}) - (\text{number of black piece X}) \)
- other features: degree of control over the center area
- exact values do not matter: the order of Minimax-Value of the successors matter.

\[\text{MAX} \geq 4 \]
\[\text{MIN} \leq 2 \]

\[\alpha \] Cuts

When the current max value is greater than the successor’s min value, don’t look further on that min subtree:

\[\text{Right subtree can be at most 2, so MAX will always choose the left path regardless of what appears next.} \]

\[\beta \] Cuts

When the current min value is less than the successor’s max value, don’t look further on that max subtree:

\[\text{Right subtree can be at least 5, so MIN will always choose the left path regardless of what appears next.} \]

\[\alpha - \beta \] Pruning

- memory of best MAX value \(\alpha \) and best MIN value \(\beta \)
- do not go further on any one that does worse than the remembered \(\alpha \) and \(\beta \)
α − β Pruning Properties

Cut off nodes that are known to be suboptimal.

Properties:
- pruning **does not** affect final result
- good move ordering improves effectiveness of pruning
- with perfect ordering, time complexity = $b^{m/2}$
 - doubles depth of search
 - can easily reach 8-ply in chess
- $b^{m/2} = (\sqrt{b})^m$, thus $b = 35$ in chess reduces to $b = \sqrt{35} \approx 6$!!!

Overview

- formal α − β pruning algorithm
- α − β pruning properties
- games with an element of chance
- state-of-the-art game playing with AI
- more complex games

Key Points

- Game playing: what are the types of games?
- Minimax: definition, and how to get minmax values
- Minimax: evaluation
- α-β pruning: why it saves time

α − β Pruning: Initialization

Along the path from the beginning to the current state:

- α: best MAX value
 - initialize to $-\infty$
- β: best MIN value
 - initialize to ∞
Pruning Algorithm: Max-Value

\[\alpha - \beta \]

```
function Max-Value (state, game, \( \alpha \), \( \beta \)) return utility value

\( \alpha \): best MAX on path to state; \( \beta \): best MIN on path to state

if Cutoff(state) then return Utility(state)

\( v \leftarrow -\infty \)

for each \( s \) in Successor(state) do
    \( v \leftarrow \text{Max}(\alpha, \text{Min-Value}(s, game, \alpha, \beta)) \)
    if \( v \geq \beta \) then return \( v \) /* CUT!! */
    \( \alpha \leftarrow \text{Max}(\alpha, v) \)
end

return \( v \)
```

Pruning Algorithm: Min-Value

\[\alpha - \beta \]

```
function Min-Value (state, game, \( \alpha \), \( \beta \)) return utility value

\( \alpha \): best MAX on path to state; \( \beta \): best MIN on path to state

if Cutoff(state) then return Utility(state)

\( v \leftarrow \infty \)

for each \( s \) in Successor(state) do
    \( v \leftarrow \text{Min}(\beta, \text{Max-Value}(s, game, \alpha, \beta)) \)
    if \( v \leq \alpha \) then return \( v \) /* CUT!! */
    \( \beta \leftarrow \text{Min}(\beta, v) \)
end

return \( v \)
```

Pruning Tips

- At a MAX node:
 - Only \(\alpha \) is updated with the MAX of successors.
 - Cut is done by checking if returned \(v \geq \beta \).
 - If all fails, \(\text{MAX}(v \text{ of successors}) \) is returned.

- At a MIN node:
 - Only \(\beta \) is updated with the MIN of successors.
 - Cut is done by checking if returned \(v \leq \alpha \).
 - If all fails, \(\text{MIN}(v \text{ of successors}) \) is returned.

Exercise
Ordering is Important for Good Pruning

- For MIN, sorting successor's utility in an **increasing** order is better (shown above; left).
- For MAX, sorting in **decreasing** order is better.

Games With an Element of Chance

Rolling the dice, shuffling the deck of card and drawing, etc.

- **chance nodes** need to be included in the minimax tree
- try to make a move that maximizes the expected value → **expectimax**
- expected value of random variable X:
 \[
 E(X) = \sum_x x P(x)
 \]
- **expectimax**
 \[
 \text{expectimax}(C) = \sum_i P(d_i) \max_{s \in S(C,d_i)} \text{utility}(s)
 \]

Design Considerations for Probabilistic Games

- the **value** of evaluation function, not just the **scale** matters now! (think of what expected value is)
- time complexity: $b^m n^m$, where n is the number of distinct dice rolls
- pruning can be done if we are careful
State of the Art in Gaming With AI

- Chess: IBM’s Deep Blue defeated Garry Kasparov (1997)
- Backgammon: Tesauro’s Neural Network → top three (1992)
- Othello: smaller search space → superhuman performance
- Checkers: Samuel’s Checker Program running on 10Kbyte (1952)

Genetic algorithms can perform very well on select domains.

Hard Games

The game of Go, popular in East Asia:

- $19 \times 19 = 361$ grid: branching factor is huge!
- search methods inevitably fail: need more structured rules
- the bet was high: $1,400,000$ prize for the first computer program to beat a select, 12-year old player. The late Mr. Ing Chang Ki (photo above) put up the money from his personal funds.

Key Points

- formal $\alpha - \beta$ pruning algorithm: know how to apply pruning
- $\alpha - \beta$ pruning properties: evaluation
- games with an element of chance: what are the added elements? how does the minmax tree get augmented?