What Is Machine Learning?

- A subfield of AI that is rapidly growing in importance.
- Performance of a system increased based on learning experience.
- Learning from data.

Why Machine Learning?

- Abundance of data: the data deluge.
 - Scientific instruments.
 - Data acquisition devices.
 - Internet and the web.
 - All sectors of human society producing and digitizing data.
- Not enough human expertise or man power to make sense of such huge amounts of data.

Machine Learning in the News

- IBM's Watson beats human champions: Jeopardy (game show)
- Google detects cats from YouTube videos.
- Google Glass app recognizes people it sees.
- Legal, medical, financial applications.
What Does It Take to do ML?

A lot of math:

• Linear algebra
• Calculus
• Probability and statistics
• Differential geometry
• Numerical methods

Types of Machine Learning

• Supervised learning
 – Input-Target pairs
 – \{\langle \vec{x}_i, \vec{t}_i \rangle | i = 1, 2, \ldots, n \}\n
• Unsupervised learning
 – A bunch of inputs (unlabeled)
 – \{\vec{x}_i | i = 1, 2, \ldots, n \}

• Reinforcement learning
 – state_1 \xrightarrow{a_1} state_2 \xrightarrow{a_2} state_3, \ldots, reward
 – s_{t+1} = \delta(s_t, a_t), r_{t+1} = \rho(s_t, a_t)

Example Data

• Left: supervised
• Right: unsupervised
• Typically very high dimensional (10,000, 1 million [or more]).

High-dimensional Data

• Images: these are 2D images, but ...
• These are 50 \times 50 = 2,500-dimensional vectors.
 – Each such image is a single point in 2,500-dimensional space.
Supervised Learning

- Regression: approximating \(y = f(x) \)
- Classification: face recognition, hand-written character recognition, credit risk assessment, etc.
- Techniques:
 - Neural networks
 - Decision tree learning
 - Support vector machines
 - Radial basis functions
 - Naive Bayes learning
 - k-nearest neighbor

Neural Networks

- Input, hidden, and output units.
- Connection weights are adjusted based on \(\langle \vec{x}_t, \vec{t}_t \rangle \) and error in the output.

Decision Tree Learning

- Building a tree from scratch, one attribute at a time.
- Maximized information gain (checking which attribute reduces uncertainty the most?).
Support Vector Machine

- Similar to a one-layer neural network.
- Learning rule is different.
- Nice optimality properties.

Supervised Learning Issues

- How well will it do on training inputs?
- How well will it do on novel inputs?
 - Generalization.
- How many samples needed for sufficient performance and generalization?
 - Sample complexity
 - Curse of dimensionality
 - Computational learning theory
- Catastrophic forgetting (online learning hard).

Addendum: Curse of Dimensionality

From: Yoshua Bengio’s page

- Exponentially many points needed to achieve same density of training samples.

Unsupervised Learning
Unsupervised Learning

- Clustering, feature extraction, blind source separation, dimensionality reduction, etc.
- Techniques:
 - Principal Component Analysis (PCA)
 - Self-Organizing Maps (SOM)
 - Independent Component Analysis (ICA)
 - Multi-Dimensional Scaling (MDS)
 - ISOMAP, Locally Linear Embedding (LLE)

Principal Component Analysis

- Finding orthogonal axes that result in maximum variance when projected.
- Large portion of information resides in the first few principal components.
- Dimensionality reduction.

Self-Organizing Maps

- Units occupy a regular grid (1D, 2D, 3D), with reference vector.
- Inputs matched to units with most similar reference vectors.
- Reference vectors adjusted based on match and neighbor on grid.
- Nearby units represent similar inputs.

Independent Component Analysis

- Find additive sources (right) based on their mixtures (e.g., image patches to the left).
- Sources assumed to be statistically independent from each other and non-Gaussian.
- Feature extraction, blind source separation.
Manifold Learning: ISOMAP, etc.

- Low-dimensional manifold embedded in high-dimensional space.
- Recover the manifold. Geodesic distance a central concept.
- Dimensionality reduction, visualization, etc.

Unsupervised Learning Issues

- Discovering structure.
- Discovering features.
- Removing redundancy.
- How many clusters?
- What distance measures to use?

Reinforcement Learning

- Very different from supervised and unsupervised learning.
- Multi agent control, robot control, game playing, scheduling, etc.
- Techniques:
 - Value function-based: Q-learning, Temporal difference (TD) learning
 - Direct policy search: Neuroevolution, genetic algorithms.
Learning the Meaning of Neural Spikes

• What do these blinking lights mean? (Choe et al. 2007).

25

They Are Visual Cortical Responses to Oriented Lines

• What If They Are Brain Responses to Something

They Are Visual Cortical Responses to Oriented Lines

This is a problem of grounding.

Use Reinforcement Learning

• Direct access to encoded internal state (sensory array) only.

• Action is enabled, which can move the gaze.

• How does this solve the grounding problem?
Action for Unchanging Internal State

- Diagonal motion causes the internal state to remain unchanging over time.
- Property of such a movement exactly reflects the property of the input I: Semantics figured out through action.

Reinforcement Learning

- Learn state-to-action mapping to maximize invariance in internal state.

Results: Learned $R(s,a)$

- Learned $R(s,a)$ close to ideal.

Results: Gaze Trajectory
Brief Summary

- Decoding of encoded representation can be done without external reference.
- Action and changes in the internal representation induced by action is the key.
- Reinforcement learning plays a key role.

Reinforcement Learning Issues

- Discrete states and actions is a norm.
- Scalability an issue.
- Certain assumptions: state-action pair visited infinitely often.
- Online learning, safety, transfer, etc.

Summary

- Machine learning is a rapidly developing field with great promise:
 - Big data
 - New theoretical insights (e.g., deep learning)
- Need to look beyond ML:
 - ML good at solving problems, but not posing problems (Choe and Mann 2012).