Neural Networks

- Threshold units
- Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face Recognition
- Advanced topics
- And, more.

Understanding the Brain

- Levels of analysis (Marr, 1982)
 1. Computational theory
 2. Representation and algorithm
 3. Hardware implementation
- Reverse engineering: From hardware to theory
- Parallel processing: SIMD vs MIMD
- Neural net: SIMD with modifiable local memory
- Learning: Update by training/experience

Biological Neurons and Networks

- Neuron switching time ~ 0.001 second (1 ms)
- Number of neurons $\sim 10^{10}$
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time ~ 0.1 second (100 ms)
- 100 processing steps doesn’t seem like enough
 \rightarrow much parallel computation
Artificial Neural Networks

- Many neuron-like threshold switching units (real-valued)
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically: New learning algorithms, new optimization techniques, new learning principles.

Biologically Motivated (or Accurate) Neural Networks

- Spiking neurons
- Complex morphological models
- Detailed dynamical models
- Connectivity either based on or trained to mimic biology
- Focus on modeling network/neural/subneural processes
- Focus on natural principles of neural computation
- Different forms of learning: spike-timing-dependent plasticity, covariance learning, short-term and long-term plasticity, etc.

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Long training time (may need occasional, extensive retraining)
- Form of target function is unknown
- Fast evaluation of learned target function
- Human readability of result is unimportant

Example Applications (more later)

Examples:

- Speech synthesis
- Handwritten character recognition (from yann.lecun.com)
- Financial prediction, Transaction fraud detection (Big issue lately)
- Driving a car on the highway
Perceptrons

\[o(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise} \end{cases} \]

Sometimes we'll use simpler vector notation:

\[o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise} \end{cases} \]

Boolean Logic Gates with Perceptron Units

- Perceptrons can represent basic boolean functions.
- Thus, a network of perceptron units can compute any Boolean function.

What about XOR or EQUIV?

Hypothesis Space of Perceptrons

- The tunable parameters are the weights \(w_0, w_1, \ldots, w_n \), so the space \(H \) of candidate hypotheses is the set of all possible combination of real-valued weight vectors:

\[H = \{ \vec{w} \mid \vec{w} \in \mathbb{R}^{(n+1)} \} \]

What Perceptrons Can Represent

- Perceptrons can only represent linearly separable functions.
- Output of the perceptron:

\[W_0 \times I_0 + W_1 \times I_1 - t > 0, \text{ then output is } 1 \]

\[W_0 \times I_0 + W_1 \times I_1 - t \leq 0, \text{ then output is } -1 \]

The hypothesis space is a collection of separating lines.
Geometric Interpretation

- **Rearranging**

 \[W_0 \times I_0 + W_1 \times I_1 - t > 0, \text{ then output is } 1, \]

 we get (if \(W_1 > 0 \))

 \[I_1 > \frac{-W_0}{W_1} \times I_0 + \frac{t}{W_1}, \]

 where points above the line, the output is 1, and -1 for those below the line.

 Compare with

 \[y = \frac{-W_0}{W_1} \times x + \frac{t}{W_1}. \]

Limitation of Perceptrons

- **Only functions where the -1 points and 1 points are clearly separable can be represented by perceptrons.**
- **The geometric interpretation is generalizable to functions of \(n \) arguments, i.e. perceptron with \(n \) inputs plus one threshold (or bias) unit.**

The Role of the Bias

- **Without the bias \(t = 0 \), learning is limited to adjustment of the slope of the separating line passing through the origin.**
- **Three example lines with different weights are shown.**

Generalizing to \(n \)-Dimensions

- \(\vec{n} = (a, b, c), \vec{x} = (x, y, z), \vec{x}_0 = (x_0, y_0, z_0). \)
- **Equation of a plane:** \(\vec{n} \cdot (\vec{x} - \vec{x}_0) = 0 \)
- **In short,** \(ax + by + cz + d = 0 \), where \(a, b, c \) can serve as the weight, and \(d = -\vec{n} \cdot \vec{x}_0 \) as the bias.
- **For \(n \)-D input space, the decision boundary becomes a \((n - 1)\)-D hyperplane (1-D less than the input space).**
Linear Separability

- For functions that take integer or real values as arguments and output either -1 or 1.
- Left: linearly separable (i.e., can draw a straight line between the classes).
- Right: not linearly separable (i.e., perceptrons cannot represent such a function)

XOR in Detail

<table>
<thead>
<tr>
<th>#</th>
<th>I_0</th>
<th>I_1</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

$W_0 \times I_0 + W_1 \times I_1 - t > 0$, then output is 1:

1. $-t \leq 0 \rightarrow t \geq 0$
2. $W_1 - t > 0 \rightarrow W_1 > t$
3. $W_0 - t > 0 \rightarrow W_0 > t$
4. $W_0 + W_1 - t \leq 0 \rightarrow W_0 + W_1 \leq t$

$2t < W_0 + W_1 < t$ (from 2, 3, and 4), but $t \geq 0$ (from 1), a contradiction.

Learning: Perceptron Rule

- The weights do not have to be calculated manually.
- We can train the network with (input,output) pair according to the following weight update rule:

 $w_i \leftarrow w_i + \eta(t - o)x_i$

where η is the learning rate parameter.
- Proven to converge if input set is linearly separable and η is small.
Learning in Perceptrons (Cont’d)

\[w_i \leftarrow w_i + \eta(t - o)x_i \]

- When \(t = o \), weight stays.
- When \(t = 1 \) and \(o = -1 \), change in weight is:
 \[\eta(1 - (-1))x_i > 0 \]
 if \(x_i \) are all positive. Thus \(\vec{w} \cdot \vec{x} \) will increase, thus eventually, output \(o \) will turn to 1.
- When \(t = -1 \) and \(o = 1 \), change in weight is:
 \[\eta(-1 - 1)x_i < 0 \]
 if \(x_i \) are all positive. Thus \(\vec{w} \cdot \vec{x} \) will decrease, thus eventually, output \(o \) will turn to -1.

Another Learning Rule: Delta Rule

- The perceptron rule cannot deal with noisy data.
- The delta rule will find an approximate solution even when input set is not linearly separable.
- Use linear unit without the step function: \(o(\vec{x}) = \vec{w} \cdot \vec{x} \).
- Want to reduce the error by adjusting \(\vec{w} \):
 \[E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]

Gradient Descent

- Want to minimize by adjusting \(\vec{w} \):
 \[E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]
- Note: the error surface is defined by the training data \(D \). A different data set will give a different surface.
- \(E(w_0, w_1) \) is the error function above, and we want to change \((w_0, w_1) \) to position under a low \(E \).
Gradient Descent (Cont’d)

Gradient

\[\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right] \]

Training rule:

\[\Delta \vec{w} = -\eta \nabla E[\vec{w}] \]

i.e.,

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \]

Gradient Descent (Example)

\[\nabla E = \left(\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1} \right), \text{a vector on a 2D plane.} \]

Gradient Descent: Summary

Gradient-Descent \((\text{training examples}, \eta) \)

Each training example is a pair of the form \(\langle \vec{x}, t \rangle \), where \(\vec{x} \) is the vector of input values, and \(t \) is the target output value. \(\eta \) is the learning rate (e.g., .05).

- Initialize each \(w_i \) to some small random value
- Until the termination condition is met, Do
 - Initialize each \(\Delta w_i \) to zero.
 - For each \(\langle \vec{x}, t \rangle \) in \text{training examples}, Do
 - Input the instance \(\vec{x} \) to the unit and compute the output \(o \)
 - For each linear unit weight \(w_i \), Do
 \[\Delta w_i \leftarrow \Delta w_i + \eta (t - o)x_i \]
 - For each linear unit weight \(w_i \), Do
 \[w_i \leftarrow w_i + \Delta w_i \]
Gradient Descent Properties

Gradient descent is effective in searching through a large or infinite H:

- H contains continuously parameterized hypotheses, and
- the error can be differentiated wrt the parameters.

Limitations:

- convergence can be slow, and
- finds local minima (global minimum not guaranteed).

Stochastic Approximation to Grad. Desc.

Avoiding local minima: Incremental gradient descent, or stochastic gradient descent.

- Instead of weight update based on all input in D, immediately update weights after each input example:
 \[
 \Delta w_i = \eta (t - o)x_i,
 \]
 instead of
 \[
 \Delta w_i = \eta \sum_{d \in D} (t_d - o_d)x_i,
 \]
- Can be seen as minimizing error function
 \[
 E_d(\vec{w}) = \frac{1}{2} (t_d - o_d)^2.
 \]

Standard and Stochastic Grad. Desc.: Differences

- In the standard version, error is defined over entire D.
- In the standard version, more computation is needed per weight update, but η can be larger.
- Stochastic version can sometimes avoid local minima.

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule using gradient descent

- Asymptotic convergence to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H
Exercise: Implementing the Perceptron

- It is fairly easy to implement a perceptron.
- You can implement it in any programming language: C/C++, etc.
- Look for examples on the web, and JAVA applet demos.

Multilayer Networks

- Differentiable threshold unit: \(\text{sigmoid} \)

\[
\sigma(y) = \frac{1}{1 + \exp(-y)}.
\]

Interesting property: \(\frac{d\sigma(y)}{dy} = \sigma(y)(1 - \sigma(y)) \).

- Output:

\[
o = \sigma(\vec{w} \cdot \vec{x})
\]

- Other functions:

\[
tanh(y) = \frac{\exp(-2y) - 1}{\exp(-2y) + 1}
\]

Multilayer Networks and Backpropagation

- Nonlinear decision surfaces.

(a) One output

(b) Two hidden, one output

Another example: XOR

Error Gradient for a Sigmoid Unit

\[
\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2
\]

\[
= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2
\]

\[
= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
\]

\[
= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)
\]

\[
= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial \text{net}_d} \frac{\partial \text{net}_d}{\partial w_i}
\]
Error Gradient for a Sigmoid Unit

From the previous page:
\[\frac{\partial E}{\partial w_i} = - \sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i} \]

But we know:
\[\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d) \]
\[\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d} \]

So:
\[\frac{\partial E}{\partial w_i} = - \sum_{d \in D} (t_d - o_d) o_d(1 - o_d) x_{i,d} \]

The \(\delta \) Term

- For output unit:
 \[\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k) \]
 \[\frac{\partial E_d}{\partial w_j} \]
 \[\sigma'(net_k) \text{ Error} \]

- For hidden unit:
 \[\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{kh} \delta_k \]
 \[\sigma'(net_h) \text{ Backpropagated error} \]

- In sum, \(\delta \) is the derivative times the error.
- Derivation to be presented later.

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do
- For each training example, Do
 1. Input the training example to the network and compute the network outputs
 2. For each output unit \(k \)
 \[\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k) \]
 3. For each hidden unit \(h \)
 \[\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{kh} \delta_k \]
 4. Update each network weight \(w_{ji} \)
 \[w_{ji} \leftarrow w_{ji} + \Delta w_{ji} \]
 where
 \[\Delta w_{ji} = \eta \delta_j x_i. \]

Note: \(w_{ji} \) is the weight from \(i \) to \(j \) (i.e., \(w_j \leftarrow i \)).

Derivation of \(\Delta w \)

- Want to update weight as:
 \[\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}, \]
 where error is defined as:
 \[E_d(\vec{w}) \equiv \frac{1}{2} \sum_{k \in \text{outputs}} (t_k - o_k)^2 \]

- Given \(net_j = \sum_j w_{ji}x_i \),
 \[\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}} \]

- Different formula for output and hidden.
Derivation of Δw: Output Unit Weights

From the previous page,
\[
\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}
\]

• First, calculate $\frac{\partial E_d}{\partial net_j}$:
\[
\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}
\]
\[
\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \sum_{k \in outputs} (t_k - o_k)^2
\]
\[
= \sum_{k \in outputs} \frac{1}{2} (t_k - o_k)^2
\]
\[
= \frac{1}{2} (t_j - o_j)^2 \frac{\partial (t_j - o_j)}{\partial o_j}
\]
\[
= -(t_j - o_j)
\]

Derivation of Δw: Hidden Unit Weights

Start with
\[
\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} x_i:
\]
\[
\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j}
\]
\[
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j}
\]
\[
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial o_j}{\partial net_j}
\]
\[
= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}
\]
\[
= \sum_{k \in Downstream(j)} -\delta_k w_{kj} o_j (1 - o_j)
\]
(1)

Derivation of Δw: Output Unit Weights

From the previous page,
\[
\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} = -(t_j - o_j) o_j (1 - o_j):
\]

• Next, calculate $\frac{\partial o_j}{\partial net_j}$: Since $o_j = \sigma(\text{net}_j)$, and
\[
\sigma'(\text{net}_j) = o_j(1 - o_j),
\]
\[
\frac{\partial o_j}{\partial net_j} = o_j(1 - o_j).
\]

Putting everything together,
\[
\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} = -(t_j - o_j)a_j(1 - o_j).
\]
Derivation of Δw: Hidden Unit Weights

Finally, given

$$ \frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} x_i, $$

and

$$ \frac{\partial E_d}{\partial \text{net}_j} = \sum_{k \in \text{Downstream}(j)} -\delta_k w_{kj} o_j (1 - o_j), $$

$$ \Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} = \eta [o_j (1 - o_j) \sum_{k \in \text{Downstream}(j)} \delta_k w_{kj}] x_i, $$

Extension to Different Network Topologies

- Arbitrary number of layers: for neurons in layer m:

$$ \delta_r = o_r (1 - o_r) \sum_{s \in \text{layer } m+1} w_{sr} \delta_s. $$

- Arbitrary acyclic graph:

$$ \delta_r = o_r (1 - o_r) \sum_{s \in \text{Downstream}(r)} w_{sr} \delta_s. $$

Backpropagation: Properties

- Gradient descent over entire network weight vector.
- Easily generalized to arbitrary directed graphs.
- Will find a local, not necessarily global error minimum:
 - In practice, often works well (can run multiple times with different initial weights).
- Often include weight momentum α

$$ \Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1). $$

- Minimizes error over training examples:
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using the network after training is very fast.

Representational Power of Feedforward Networks

- Boolean functions: every boolean function representable with two layers (hidden unit size can grow exponentially in the worst case: one hidden unit per input example, and “OR” them).
- Continuous functions: Every bounded continuous function can be approximated with an arbitrarily small error (output units are linear).
- Arbitrary functions: with three layers (output units are linear).
H-Space Search and Inductive Bias

- **H-space** = \(n \)-D weight space (when there are \(n \) weights).
- The space is **continuous**, unlike decision tree or general-to-specific concept learning algorithms.
- Inductive bias:
 - Smooth interpolation between data points.
Overfitting

- Error in two different robot perception tasks.
- Training set and validation set error.
- Early stopping ensures good performance on unobserved samples, but must be careful.
- Weight decay, use of validation sets, use of k-fold cross-validation, etc. to overcome the problem.

Recurrent Networks

- Sequence recognition.
- Store tree structure (next slide).
- Can be trained with plain backpropagation.
- Generalization may not be perfect.

Alternative Error Functions

Penalize large weights:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji}^2$$

Train on target slopes as well as values (when the slope is available):

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} \left((t_{kd} - o_{kd})^2 + \mu \sum_{j \in \text{inputs}} \left(\frac{\partial t_{kd}}{\partial x^d} - \frac{\partial o_{kd}}{\partial x^d} \right)^2 \right)$$

Tie together weights:

- e.g., in phoneme recognition network, or
- handwritten character recognition (weight sharing).

Recurrent Networks (Cont’d)

- Autoassociation (input = output)
- Represent a stack using the hidden layer representation.
- Accuracy depends on numerical precision.
Learning Time

- Applications:
 - Sequence recognition: Speech recognition
 - Sequence reproduction: Time-series prediction
 - Sequence association
- Network architectures
 - Time-delay networks (Waibel et al., 1989)
 - Recurrent networks (Rumelhart et al., 1986)

Time-Delay Neural Networks

Recurrent Networks

Unfolding in Time
Some Applications: NETtalk

- Learn to pronounce English text.
- Demo
- Data available in UCI ML repository

Backpropagation Exercise

- **URL**: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz
- Untar and read the README file:
  ```bash
gzip -dc backprop-1.6.tar.gz | tar xvf -
```
- Run `make` to build (on departmental unix machines).
- Run ./bp conf/xor.conf etc.

Backpropagation: Example Results

- Epoch: one full cycle of training through all training input patterns.
- OR was easiest, AND the next, and XOR was the most difficult to learn.
- Network had 2 input, 2 hidden and 1 output unit. Learning rate was 0.001.
Backpropagation: Example Results (cont’d)

Backprop

OR

AND

XOR

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

Backpropagation: Things to Try

• How does increasing the number of hidden layer units affect the (1) time and the (2) number of epochs of training?

• How does increasing or decreasing the learning rate affect the rate of convergence?

• How does changing the slope of the sigmoid affect the rate of convergence?

• Different problem domains: handwriting recognition, etc.

Structured MLP

(Le Cun et al, 1989)

Weight Sharing
Tuning the Network Size

- Destructive
- Weight decay:
- Constructive
- Growing networks

\[
\Delta w_i = -\eta \frac{\partial E}{\partial w_i} - \lambda w_i
\]

\[
E' = E + \frac{\lambda}{2} \sum_i w_i^2
\]

Consider weights \(w_i \) as random vars, prior \(p(w_i) \)
- Weight decay, ridge regression, regularization
cost=data-misfit + \(\lambda \) complexity

More about Bayesian methods in chapter 14

Bayesian Learning

\[
p(w | X) = \frac{p(X | w)p(w)}{p(X)} \quad \hat{w}_{MAP} = \arg \max_w \log p(w | X)
\]

\[
\log p(w | X) = \log p(X | w) + \log p(w) + C
\]

\[
p(w) = \prod_i p(w_i) \quad \text{where} \quad p(w_i) = c \cdot \exp \left[-\frac{w_i^2}{2(1/2\lambda)} \right]
\]

\[
E' = E + \lambda \|w\|^2
\]

Weight decay, ridge regression, regularization

Summary

- ANN learning provides general method for learning real-valued functions over continuous or discrete-valued attributed.
- ANNs are robust to noise.
- \(H \) is the space of all functions parameterized by the weights.
- \(H \) space search is through gradient descent: convergence to local minima.
- Backpropagation gives novel hidden layer representations.
- Overfitting is an issue.
- More advanced algorithms exist.