Genetic Algorithms

Mitchell chapter 9.

- Based loosely on simulated evolution.
- Hypotheses: described in bit strings (subject to interpretation in specific domains).
- Search: population of hypotheses, refined through mutation and crossover to increase fitness.
- Applications: optimization problems, learning the topology and parameters in neural networks, and many more.

Biological Evolution

Lamarck and others:
- Species “transmute” over time (inheritance of acquired trait)

Darwin and Wallace:
- Consistent, heritable variation among individuals in population
- Natural selection of the fittest

Mendel and genetics:
- A mechanism for inheriting traits
- genotype \rightarrow phenotype mapping

Motivation

- Mutation and crossover of hypotheses in the current population.
- Basically a *generate-and-test* beam search.
- Motivating factors:
 - Evolution is known to be successful.
 - GAs can search hypotheses containing complex interacting parts.
 - Easily parallelizable.

Genetic Algorithms

- Population: set of current hypotheses
- Fitness: predefined measure of success
- Elements of GA:
 fitness test \rightarrow selection \rightarrow reproduction (mutation, crossover)
GA(\textit{Fitness},\ \textit{Fitness_threshold},\ p,\ r,\ m)

- **Initialize:** $P \leftarrow p$ random hypotheses
- **Evaluate:** for each h in P, compute $\text{Fitness}(h)$
- While $[\max_h \text{Fitness}(h)] < \text{Fitness_threshold}$
 1. **Select:** Probabilistically select $(1-r)p$ members of P to add to P_s.
 \[
 \Pr(h_i) = \frac{\text{Fitness}(h_i)}{\sum_{j=1}^{p} \text{Fitness}(h_j)}
 \]
 2. **Crossover:** Probabilistically select $r\cdot p$ pairs of hypotheses from P.
 For each pair, (h_1, h_2), produce two offspring by applying the Crossover operator. Add all offspring to P_s.
 3. **Mutate:** Invert a randomly selected bit in $m \cdot p$ random members of P_s.
 4. **Update:** $P \leftarrow P_s$
 5. **Evaluate:** for each h in P, compute $\text{Fitness}(h)$

- Return the hypothesis from P that has the highest fitness.

Representing Hypotheses

Represent $(\text{Outlook} = \text{Overcast} \lor \text{Rain}) \land (\text{Wind} = \text{Strong})$ by

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>011</td>
<td>10</td>
</tr>
</tbody>
</table>

Represent $\text{IF Wind} = \text{Strong} \text{ THEN PlayTennis} = \text{yes}$ by

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Selecting Most Fit Hypotheses

Fitness proportionate selection:

\[
\Pr(h_i) = \frac{\text{Fitness}(h_i)}{\sum_{j=1}^{p} \text{Fitness}(h_j)}
\]

... can lead to crowding

Tournament selection:

- Pick h_1, h_2 at random with uniform prob.
- With probability p, select the more fit.

Rank selection:

- Sort all hypotheses by fitness
- Probability of selection is proportional to rank

Genetic Operators

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>11111000000</td>
<td>11101010101</td>
</tr>
<tr>
<td>00001010101</td>
<td></td>
<td>00010010100</td>
</tr>
</tbody>
</table>

Single-point crossover:

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>00111110000</td>
<td>11001011000</td>
</tr>
<tr>
<td>00001010101</td>
<td></td>
<td>01010000101</td>
</tr>
</tbody>
</table>

Two-point crossover:

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>10010001000</td>
<td>10001000100</td>
</tr>
<tr>
<td>00001010101</td>
<td></td>
<td>01101011001</td>
</tr>
</tbody>
</table>

Uniform crossover:

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>10011010011</td>
<td>11001000100</td>
</tr>
<tr>
<td>00001010101</td>
<td></td>
<td>01101011001</td>
</tr>
</tbody>
</table>

Point mutation:

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>11101001000</td>
</tr>
<tr>
<td>00001010101</td>
<td>11101011000</td>
</tr>
</tbody>
</table>
Example: GABIL [DeJong et al. 1993]
Learn disjunctive set of propositional rules, competitive with C4.5

Fitness:

\[\text{Fitness}(h) = (\text{percent} \cdot \text{correct}(h))^2 \]

Representation:

If \(a_1 = T \land a_2 = F \) THEN \(c = T \); If \(a_2 = T \) THEN \(c = F \)

represented by

\[
\begin{array}{ccc}
 a_1 & a_2 & c \\
 10 & 01 & 1 \\
\end{array}
\quad
\begin{array}{ccc}
 a_1 & a_2 & c \\
 11 & 10 & 0 \\
\end{array}
\]

Genetic operators: ???

- want variable length rule sets (as number of attributes can change)
- want only well-formed bitstring hypotheses

Lesson

- Picking a representation for the hypotheses can be tricky.
- Genetic operators need to preserve the semantics of the genetic encoding.

Crossover with Variable-Length Bitstrings

Start with

\[
\begin{array}{ccc}
 a_1 & a_2 & c \\
 h_1 : & 10 & 01 \\
\end{array}
\quad
\begin{array}{ccc}
 a_1 & a_2 & c \\
 h_2 : & 01 & 11 \\
\end{array}
\]

1. choose crossover points for \(h_1 \), e.g., after bits 1, 8
2. now restrict points in \(h_2 \) to those that produce bitstrings with well-defined semantics, e.g., \(\langle 1, 3 \rangle \), \(\langle 1, 8 \rangle \), \(\langle 6, 8 \rangle \).

if we choose \(\langle 1, 3 \rangle \), result is

\[
\begin{array}{ccc}
 a_1 & a_2 & c \\
 h_3 : & 11 & 10 \\
\end{array}
\quad
\begin{array}{ccc}
 a_1 & a_2 & c \\
 a_1 & a_2 & c \\
 a_1 & a_2 & c \\
 h_4 : & 00 & 01 \\
\end{array}
\]

Extensions to GABIL

Add new genetic operators, also applied probabilistically:

1. \textit{AddAlternative}: generalize constraint on \(a_i \) by changing a 0 to 1
2. \textit{DropCondition}: generalize constraint on \(a_i \) by changing every 0 to 1

And, add new field to bitstring to determine whether to allow these

\[
\begin{array}{cccc}
 a_1 & a_2 & c & AA \quad DC \\
 01 & 11 & 0 & 10 \quad 01 \quad 0 \\
\end{array}
\]

So now the learning strategy also evolves. (Allowing this increased accuracy.)
GABIL Results

Performance of GABIL comparable to symbolic rule/tree learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:

- GABIL without AA and DC operators: 92.1% accuracy
- GABIL with AA and DC operators: 95.2% accuracy
- Symbolic learning methods ranged from 91.2 to 96.6

Characterizing Evolution: Schemas

How to characterize evolution of population in GA?

Schema = string containing 0, 1, * ("don’t care")

- Typical schema: 10**0*
- Instances of above schema: 101101, 100000, ...
- An instance of length 4, say 0010, can have 2^4 matching schemas.

Characterize population by number of instances representing each possible schema:

- $m(s, t) =$ number of instances of schema s in pop at time t
- Want to estimate $m(s, t + 1)$ given $m(s, t)$ and other factors.

Factors Influencing Change in $m(s, t)$

$m(s, t)$ can change as t changes, due to the following factors:

- Selection: if individuals representing s get selected more often, $m(s, \cdot)$ will increase.
- Crossover
- Mutation

Schema theorem: gives $E[m(s, t + 1)]$.

Influence of Selection

- $\bar{f}(t) =$ average fitness of pop. at time t
- $m(s, t) =$ instances of schema s in pop at time t
- $\hat{u}(s, t) =$ average fitness of instances of s at time t
- $h \in s \cap p_t$: instances of schema s in the population at time t

Probability of selecting h in one selection step

$$Pr(h) = \frac{f(h)}{\sum_{i=1}^{n} f(h_i)} = \frac{f(h)}{n\bar{f}(t)}$$

Mean fitness of instances of s at time t:

$$\hat{u}(s, t) = \frac{\sum_{h \in s \cap p_t} f(h)}{m(s, t)}$$
Influence of Selection

Probability of selecting an instance of s in one step

$$\Pr(h \in s) = \sum_{h \in s \cap p_t} \frac{f(h)}{n \bar{f}(t)}$$

Expected number of instances of s after n selections

$$E[m(s, t + 1)] = \frac{\hat{u}(s, t)}{\bar{f}(t)} m(s, t)$$

Schema Theorem

$$E[m(s, t + 1)] \geq \hat{u}(s, t) m(s, t) \left(1 - p_c \frac{d(s)}{l - 1} \right) (1-p_m)^{o(s)}$$

- $m(s, t) = \text{instances of schema } s \text{ in pop at time } t$
- $\bar{f}(t) = \text{average fitness of pop. at time } t$
- $\hat{u}(s, t) = \text{ave. fitness of instances of } s \text{ at time } t$
- $p_c = \text{probability of single point crossover operator}$
- $p_m = \text{probability of mutation operator}$
- $l = \text{length of single bit strings}$
- $o(s) = \text{number of defined (non "*") bits in } s$
- $d(s) = \text{distance between leftmost, rightmost defined bits in } s$

Genetic Programming

Population of programs represented by trees

$$\sin(x) + \sqrt{x^2 + y}$$

Crossover: Swap whole subtrees

![Diagram of crossover operation]
Block Problem

Goal: spell UNIVERSAL

Terminals:

- CS ("current stack") = name of the top block on stack, or F.
- TB ("top correct block") = name of topmost correct block on stack
- NN ("next necessary") = name of the next block needed above TB in the stack

Primitive Functions

- (MS x): ("move to stack"), if block x is on the table, moves x to the top of the stack and returns the value T. Otherwise, does nothing and returns the value F.
- (MT x): ("move to table"), if block x is somewhere in the stack, moves the block at the top of the stack to the table and returns the value T. Otherwise, returns F.
- (EQ x y): ("equal"), returns T if x equals y, and returns F otherwise.
- (NOT x): returns T if $x = F$, else returns F.
- (DU x y): ("do until") executes the expression x repeatedly until expression y returns the value T

Learned Program

Trained to fit 166 test problems

Using population of 300 programs, found this after 10 generations:

$$ (EQ \ (DU \ (MT \ CS) \ (NOT \ CS)) \ (DU \ (MS \ NN) \ (NOT \ NN)) \) $$

Biological Evolution

Lamarck (19th century)

- Believed individual genetic makeup was altered by lifetime experience
- But current evidence contradicts this view

What is the impact of individual learning on population evolution?
Baldwin Effect

Assume

- Individual learning has no direct influence on individual DNA
- But ability to learn reduces need to “hard wire” traits in DNA

Then

- Ability of individuals to learn will support more diverse gene pool
 - Because learning allows individuals with various “hard wired” traits to be successful
- More diverse gene pool will support faster evolution of gene pool

→ individual learning (indirectly) increases rate of evolution

Computer Experiments on Baldwin Effect

[Hinton and Nowlan, 1987]

Evolve simple neural networks:

- Some network weights fixed during lifetime, others trainable
- Genetic makeup determines which are fixed, and their weight values

Results:

- With no individual learning, population failed to improve over time
- When individual learning allowed
 - Early generations: population contained many individuals with many trainable weights
 - Later generations: higher fitness, while number of trainable weights decreased

Other Considerations

- Coevolution: escalating effect or complementary dependence (insects and flowering plants) between two or more species.
- Cultural transmission: memes vs. genes.
Summary: Evolutionary Learning

- Conduct randomized, parallel, hill-climbing search through H
- Approach learning as optimization problem (optimize fitness)
- Nice feature: evaluation of Fitness can be very indirect
 - consider learning rule set for multistep decision making
 - no issue of assigning credit/blame to individual steps