Dimensionality Reduction

- Turquoise slides: Alpaydin
- Black slides: extra content.

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

- Feature selection: Choosing \(k < d \) important features, ignoring the remaining \(d - k \)
- Feature extraction: Project the original \(x_i, i = 1, \ldots, d \) dimensions to new \(k < d \) dimensions, \(z_j, j = 1, \ldots, k \)

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)

Subset Selection

- There are \(2^d \) subsets of \(d \) features
- Forward search: Add the best feature at each step
 - Set of features \(F \) initially \(\emptyset \).
 - At each iteration, find the best new feature \(j = \text{argmin}_i E (F \cup x_i) \)
 - Add \(x_j \) to \(F \) if \(E (F \cup x_j) < E (F) \)
- Hill-climbing \(O(d^2) \) algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add \(k \), remove \(l \))
Principal Components Analysis (PCA)

Note: Q means eigenvector matrix of the covariance matrix, in Haykin slides.

Motivation

- How can we project the given data so that the variance in the projected points is maximized?

Eigenvalues/Eigenvectors

- For a square matrix A, if a vector x and a scalar value λ exists so that
 \[(A - \lambda I)x = 0 \]
 then x is called an eigenvector of A and λ an eigenvalue.

- Note, the above is simply
 \[Ax = \lambda x \]

- An intuitive meaning is: x is the direction in which applying the linear transformation A only changes the magnitude of x (by λ) but not the angle.

- There can be as many as n eigenvector/eigenvalue for an $n \times n$ matrix.

Eigenvector/Eigenvalue Example

- Red: original data x
- Green: projected data using $A = \begin{bmatrix} 3 & 5 \\ 2 & 1 \end{bmatrix}$.
- Blue: Eigenvectors $v_1 = (0.91, 0.42)$, $v_2 = (-0.76, 0.65)$, $\lambda_1 = 5.3$, $\lambda_2 = -1.3$. Octave/Matlab code: $[V,\text{Lamba}]=\text{eig}(A)$
- Magenta: A times eigenvectors.
Eigenvector/Eigenvalue Example 2

- Red: original data \(x \)
- Green: projected data using \(A = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix} \).
- Blue: Eigenvectors; Magenta: \(A \) times eigenvectors.
- \(A \) is a symmetric matrix, so eigenvectors are orthogonal.

Principal Components Analysis (PCA)

- Find a low-dimensional space such that when \(x \) is projected there, information loss is minimized.
- The projection of \(x \) on the direction of \(w \) is: \(z = w^T x \)
- Find \(w \) such that \(\text{Var}(z) \) is maximized
 \[
 \text{Var}(z) = \text{Var}(w^T x) = E[(w^T x - w^T \mu)^2] \\
 = E[(w^T x - w^T \mu)(w^T x - w^T \mu)] \\
 = w^T E[(x - \mu)(x - \mu)^T] w \\
 = w^T \Sigma w
 \]
 where \(\text{Var}(x) = E[(x - \mu)(x - \mu)^T] = \Sigma \)

What PCA does

\[
z = W^T(x - m)
\]
where the columns of \(W \) are the eigenvectors of \(\Sigma \), and \(m \) is sample mean

Centers the data at the origin and rotates the axes

\[
\begin{align*}
\Sigma w_1 &= \alpha w_1 \text{ that is, } w_1 \text{ is an eigenvector of } \Sigma \\
\text{Choose the one with the largest eigenvalue for } \text{Var}(z) \text{ to be max} \\
\text{Second principal component: Max } \text{Var}(z_2), \text{ s.t., } | | w_2 | | = 1 \text{ and orthogonal to } w_1 \\
\Sigma w_2 &= \alpha w_2 \text{ that is, } w_2 \text{ is another eigenvector of } \Sigma \\
\text{and so on.}
\end{align*}
\]
How to choose k?

- Proportion of Variance (PoV) explained
 \[
 \frac{\lambda_1 + \lambda_2 + \cdots + \lambda_k}{\lambda_1 + \lambda_2 + \cdots + \lambda_k + \cdots + \lambda_d}
 \]
 when λ_i are sorted in descending order

- Typically, stop at PoV > 0.9

- Scree graph plots of PoV vs k, stop at “elbow”

PCA: Usage

- Project input x to the principal directions:
 \[a = Q^T x.\]

- We can also recover the input from the projected point a:
 \[x = (Q^T)^{-1} a = Qa.\]

- Note that we don’t need all m principal directions, depending on how much variance is captured in the first few eigenvalues: We can do dimensionality reduction.
PCA: Dimensionality Reduction

- **Encoding:** We can use the first \(l \) eigenvectors to encode \(x \).
 \[
 [a_1, a_2, ..., a_l]^T = [q_1, q_2, ..., q_l]^T x.
 \]

 Note that we only need to calculate \(l \) projections \(a_1, a_2, ..., a_l \), where \(l \leq m \).

- **Decoding:** Once \([a_1, a_2, ..., a_l]^T \) is obtained, we want to reconstruct the full \([x_1, x_2, ..., x_l, ..., x_m]^T \).
 \[
 x = Qa \approx [q_1, q_2, ..., q_l][a_1, a_2, ..., a_l]^T = \hat{x}.
 \]
 Or, alternatively
 \[
 \hat{x} = Q[a_1, a_2, ..., a_l, 0, 0, ..., 0]_{m-l \text{ zeros}}^T.
 \]

PCA Example

- **PCA Example**

```matlab
inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];
Q = [0.70285 -0.71134; 0.71134 0.70285]
lambda = [0.14425 0.00000; 0.00000 0.02161]
```

PCA: Total Variance

- The total variance of the \(m \) components of the data vector is
 \[
 \sum_{j=1}^{m} \sigma_j^2 = \sum_{j=1}^{m} \lambda_j.
 \]
- The truncated version with the first \(l \) components have variance
 \[
 \sum_{j=1}^{l} \sigma_j^2 = \sum_{j=1}^{l} \lambda_j.
 \]
- The larger the variance in the truncated version, i.e., the smaller the variance in the remaining components, the more accurate the dimensionality reduction.

Factor Analysis

- Find a small number of factors \(z \), which when combined generate \(x \):
 \[
 x_i - \mu_i = v_{i1}z_1 + v_{i2}z_2 + ... + v_{ik}z_k + \epsilon_i
 \]
 where \(z_j \), \(j = 1, ..., k \) are the latent factors with \(\text{E}[z_j]=0, \text{Var}(z_j)=1, \text{Cov}(z_i, z_j)=0, i \neq j \), \(\epsilon_i \) are the noise sources
 \[
 \text{E}[\epsilon_i]=\psi, \text{Cov}(\epsilon_i, \epsilon_j)=0, i \neq j, \text{Cov}(\epsilon_i, z_j)=0,
 \]
 and \(v_{ij} \) are the factor loadings
PCA vs FA

- **PCA** From \(x \) to \(z \)
 \[z = W^T(x - \mu) \]

- **FA** From \(z \) to \(x \)
 \[x - \mu = Vz + \epsilon \]

Factor Analysis

- In FA, factors \(z_j \) are stretched, rotated and translated to generate \(x \)

Multidimensional Scaling

- Given pairwise distances between \(N \) points, \(d_{ij}, i,j = 1, \ldots, N \)
 place on a low-dim map s.t. distances are preserved.
- \(z = g(x | \theta) \) Find \(\theta \) that min Sammon stress

\[
E(\theta | X) = \sum_{r,s} \frac{(\|z^r - z^s\| - \|x^r - x^s\|)^2}{\|x^r - x^s\|^2}
= \sum_{r,s} \frac{(\|g(x^r | \theta) - g(x^s | \theta)\| - \|x^r - x^s\|)^2}{\|x^r - x^s\|^2}
\]

Map of Europe by MDS

Manifolds
- A topological space that is locally Euclidean (flat, not curved).
- Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.
 - Straight line, wiggly curves, etc. are 1D manifolds.
 - Flat plane, surface of sphere, etc. are 2D manifolds.
- Detecting curvature of space: sum of internal angles of triangle = 180°?

Manifold Learning
- A: 2D manifold embedded in 3D embedding space.
- B: Data points extracted from A.
- C: Recovered 2D structure.
- Task: recover C from B, without knowledge of A.

Isomap
- Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space.

Geodesic Distance
- Geodesic distance = Shortest path.
- A: Manifold with two points.
- B: Euclidean distance between the two points.
- C: Geodesic distance between the two points.
Isomap

- Instances r and s are connected in the graph if
 \[|x^r - x^s| < \varepsilon \] or if \(x^s \) is one of the \(k \) neighbors of \(x^r \).
- The edge length is \(|x^r - x^s| \).
- For two nodes r and s not connected, the distance is equal to the shortest path between them.
- Once the \(N \times N \) distance matrix is thus formed, use MDS to find a lower-dimensional mapping.

Locally Linear Embedding

1. Given \(x^r \) find its neighbors \(x^{s_{(r)}} \).
2. Find \(W_{rs} \) that minimize
 \[
 E(W | X) = \sum_r \left| x^r - \sum_s W_{rs} x^{s_{(r)}} \right|^2
 \]
3. Find the new coordinates \(z^r \) that minimize
 \[
 E(z | W) = \sum_r \left| z^r - \sum_s W_{rs} z^{s_{(r)}} \right|^2
 \]

LLE on Optdigits