Emergence of Past and Future in Evolving Neural Networks

CSCE 633 Machine Learning (Spring 2014)

Yoonsuck Choe
Department of Computer Science and Engineering
Texas A&M University

* Joint work with Ji Ryang Chung and Jaerock Kwon

Evolution of Memory and Prediction

Past, Present, and Future:

- Past: memory
- Present: reactive behavior
- Future: prediction, anticipation

→ How did these temporal functions emerge/evolve?

Simple to Complex Brains

(a) Sensor=Effector (b) Sensorimotor neuron → Effector
(c) Sensory, Motor, and interneuron (d) Complex circuit

Swanson (2003)

- From reactive to recurrent.
 - Reactive: Input → Output
 - Recurrent: Input modulating on-going internal activity

Time, in the Context of Neural Networks

- Feedforward neural networks:
 Have no memory of past input.

- Recurrent neural networks:
 Have memory of past input.

e.g., Elman (1991)
Feedforward Networks

<table>
<thead>
<tr>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input1</td>
<td>Input2</td>
</tr>
<tr>
<td>Output1</td>
<td>Output2</td>
</tr>
<tr>
<td>Input2</td>
<td>Input1</td>
</tr>
<tr>
<td>Output2</td>
<td>Output3</td>
</tr>
<tr>
<td>Input3</td>
<td>Output3</td>
</tr>
</tbody>
</table>

Recurrent Networks

<table>
<thead>
<tr>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input1</td>
<td>Input2</td>
</tr>
<tr>
<td>Output1</td>
<td>Output3</td>
</tr>
<tr>
<td>Input2</td>
<td>Input1</td>
</tr>
<tr>
<td>Output2</td>
<td>Output3</td>
</tr>
<tr>
<td>Input3</td>
<td>Output3</td>
</tr>
</tbody>
</table>

Research Questions

Recollection | Prediction
Past | Present | Future

- [Q1] how did recollection (memory) evolve?
 - From reactive (present) to recurrent (past).

- [Q2] how did prediction evolve?
 - From recurrent (past) to predictive (future).

Approach

Part I: Recollection

Recollection in Feedforward Networks?

Is it possible for a feedforward network to show memory capacity?

- What would be a minimal augmentation?
- Idea: allow material interaction, dropping and detecting of external markers.

Memory Task: Catch the Balls

Agent with range sensors move left/right.

- Must catch both falling balls.
- Memory needed when ball goes out of view.

Three Network Types Compared

Compare three different networks:

1. Feedforward
2. Recurrent
3. Dropper/Detector (with Feedforward net)
1. Feedforward Network

- Standard feedforward network.

2. Recurrent Network

3. Feedfwd Net + Dropper/Detector

Feedforward network plus:
- Extra output to drop markers.
- Extra sensors to detect the markers.

Results: Feedforward

On average, only chance-level performance (50%).
- Always move to the fast ball.
- Randomly pick fast or slow ball and approach it.
Results: Recurrent vs. Dropper

- No difference in performance between dropper/detector net (right) and recurrent network (left).

Part I Summary

- Reactive, feedforward networks can exhibit memory-like behavior, when coupled with minimal material interaction.
- Adding sensors and effectors could have been easier than adjusting the neural architecture.
- Transition from external olfactory mechanism to internal memory mechanism?
- Successfully extended to 2D foraging task.

Emergence of Prediction in RNN?

Can prediction emerge in internal state dynamics?

- Idea: Test if (1) internal state dynamics is predictable in evolved recurrent nets, and (2) if that correlates with performance.

Part II: Prediction

Largely based on Kwon and Choe (2008)
Task: 2D Pole Balancing

- Standard 2D pole balancing problem.
- Keep pole upright, within square bounding region.
- Evolve recurrent neural network controllers.

Anderson (1989)

Measuring Predictability

- Train a simple feedforward network to predict the internal state trajectories.
- Measure prediction error made by the network.
 → High vs. low internal state predictability (ISP)

Example Internal State Trajectories

- Typical examples of high (top) and low (bottom) ISP.
- High ISP=predictable, Low ISP=unpredictable.
- Note: Both meet the same performance criterion!

Experiment: High vs. Low ISP

1. Train networks to achieve same performance mark.
2. Analyze internal state predictability (ISP).
3. Select top (High ISP) and bottom (Low ISP) five, and compare their performance in a harder task.
Results: Internal State Predictability (ISP)

- Trained 130 pole balancing agents.
- Chose top 10 highest ISP agents and bottom 10 lowest ISP.
 - high ISPs: $\mu = 95.61\%$ and $\sigma = 5.55\%$.
 - low ISPs: $\mu = 31.74\%$ and $\sigma = 10.79\%$.

Performance and Int. State Dyn.

- Made the initial conditions in the 2D pole balancing task harsher.
- Performance of high- and low-ISP groups compared.
- High-ISP group outperforms the low-ISP group in the changed environment.

Behavioral Predictability

- Success of high-ISP group may simply be due to simpler behavioral trajectory.
- However, predictability in behavioral predictability is no different between high- and low-ISP groups.

Examples of cart x and y position from high ISP

- Behavioral trajectories of x and y positions show complex trajectories.
Examples of cart x and y position from low ISP

- Behavioral trajectories of x and y positions show complex trajectories.

Part II Summary

- Simulations show potential evolutionary advantage of predictive internal dynamics.
- Predictive internal dynamics could be a precondition for full-blown predictive capability.

Discussion

- From external memory to internalized memory (cf. Rocha 1996).
- Analogous to olfactory vs. hippocampal function?
- Pheromones (external marker) vs. neuromodulators (internal marker)?
Discussion (cont’d) & Future Work

• Implications on the evolution of internal properties invisible to the process evolution.

• Future work: (1) actual evolution from dropper/detector net to recurrent net; (2) actual evolution of predictor that can utilize the predictable dynamics.

Conclusion

From reactive to contemplative to predictive:

• Recollection: External material interaction can be a low-cost intermediate step toward recurrent architecture.

• Prediction: Predictable internal state dynamics in recurrent neural nets can have an evolutionary edge, thus prediction can and will evolve.

References

