Dimensionality Reduction

- Turquoise slides: Alpaydin
- Black slides: extra content.

Why Reduce Dimensionality?
- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction
- Feature selection: Choosing $k<d$ important features, ignoring the remaining $d-k$
- Feature extraction: Project the original $x_i, i=1,\ldots,d$ dimensions to new $k<d$ dimensions, $z_j, j=1,\ldots,k$

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)

Subset Selection
- There are 2^d subsets of d features
- Forward search: Add the best feature at each step
 - Set of features F initially \emptyset.
 - At each iteration, find the best new feature $j = \arg\min_i E(F \cup x_i)$.
 - Add x_j to F if $E(F \cup x_j) < E(F)$.
- Hill-climbing $O(d^2)$ algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove l)
Principal Components Analysis (PCA)

Note: Q means eigenvector matrix of the covariance matrix, in Haykin slides.

Motivation

- How can we project the given data so that the variance in the projected points is maximized?

Eigenvalues/Eigenvectors

- For a square matrix A, if a vector x and a scalar value λ exists so that
 \[(A - \lambda I)x = 0\]
 then x is called an eigenvector of A and λ an eigenvalue.

- Note, the above is simply
 \[Ax = \lambda x\]

- An intuitive meaning is: x is the direction in which applying the linear transformation A only changes the magnitude of x (by λ) but not the angle.

- There can be as many as n eigenvector/eigenvalue for an $n \times n$ matrix.

Eigenvector/Eigenvalue Example

- Red: original data x
- Green: projected data using $A = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$.
- Blue: Eigenvectors $v_1=(0.91, 0.42)$, $v_2=(-0.76,0.65)$, $\lambda_1 = 5.3$, $\lambda_2 = -1.3$. Octave/Matlab code: $[V,Lambda]=eig(A)$
- Magenta: A times eigenvectors.
Eigenvector/Eigenvalue Example 2

- Red: original data x
- Green: projected data using $A = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$.
- Blue: Eigenvectors; Magenta: A times eigenvectors.
- A is a symmetric matrix, so eigenvectors are orthogonal.

Principal Components Analysis (PCA)

- Find a low-dimensional space such that when x is projected there, information loss is minimized.
- The projection of x on the direction of w is: $z = w^T x$
- Find w such that $\text{Var}(z)$ is maximized
 $\text{Var}(z) = \text{Var}(w^T x) = \mathbb{E}[(w^T x - w^T \mu)^2]$
 $= \mathbb{E}[(w^T x - w^T \mu)(w^T x - w^T \mu)]$
 $= w^T \mathbb{E}((x - \mu)(x - \mu)^T) w$
 $= w^T \Sigma w$
 where $\text{Var}(x) = \mathbb{E}[(x - \mu)(x - \mu)^T] = \Sigma$

What PCA does

$z = W^T(x - m)$

where the columns of W are the eigenvectors of Σ, and m is sample mean

Centers the data at the origin and rotates the axes

Maximize $\text{Var}(z)$ subject to $||w||=1$

$\max_{w_1} \Sigma w_1 - \alpha (w_1^T w_1 - 1)$

$\Sigma w_1 = \alpha w_1$ that is, w_1 is an eigenvector of Σ

Choose the one with the largest eigenvalue for $\text{Var}(z)$ to be max

Second principal component: Max $\text{Var}(z_2)$, s.t., $||w_2||=1$ and orthogonal to w_1

$\max_{w_2} \Sigma w_2 - \alpha (w_2^T w_2 - 1) - \beta (w_1^T w_1 - 0)$

$\Sigma w_2 = \alpha w_2$ that is, w_2 is another eigenvector of Σ

and so on.
How to choose k?

- Proportion of Variance (PoV) explained
 \[\frac{\lambda_1 + \lambda_2 + \cdots + \lambda_k}{\lambda_1 + \lambda_2 + \cdots + \lambda_k + \cdots + \lambda_d} \]
 when \(\lambda_i \) are sorted in descending order
- Typically, stop at PoV > 0.9
- Scree graph plots of PoV vs \(k \), stop at “elbow”

PCA: Usage

- Project input \(x \) to the principal directions:
 \[a = Q^T x. \]
- We can also recover the input from the projected point \(a \):
 \[x = (Q^T)^{-1} a = Qa. \]
- Note that we don’t need all \(m \) principal directions, depending on how much variance is captured in the first few eigenvalues: We can do dimensionality reduction.
PCA: Dimensionality Reduction

- **Encoding**: We can use the first l eigenvectors to encode x.
 \[[a_1, a_2, ..., a_l]^T = [q_1, q_2, ..., q_l]^T x. \]
- Note that we only need to calculate l projections $a_1, a_2, ..., a_l$, where $l \leq m$.
- **Decoding**: Once $[a_1, a_2, ..., a_l]^T$ is obtained, we want to reconstruct the full $[x_1, x_2, ..., x_l, ..., x_m]^T$.
 \[x = Qa \approx [q_1, q_2, ..., q_l][a_1, a_2, ..., a_l]^T = \hat{x}. \]

Or, alternatively

\[\hat{x} = Q[a_1, a_2, ..., a_l, 0, 0, ..., 0] \]
\[m - l \text{ zeros} \]

PCA Example

Factor Analysis

- Find a small number of factors z, which when combined generate x:
 \[x_i - \mu_i = v_{i1}z_1 + v_{i2}z_2 + \ldots + v_{ik}z_k + \varepsilon_i \]

where $z_j, j = 1, ..., k$ are the latent factors with

$E[z_j] = 0$, $\text{Var}(z_j) = 1$, $\text{Cov}(z_i, z_j) = 0, i \neq j$,

ε_i are the noise sources

$E[\varepsilon_i] = 0$, $\text{Cov}(\varepsilon_i, \varepsilon_j) = 0, i \neq j$, $\text{Cov}(\varepsilon_i, z_j) = 0$,

and v_{ij} are the factor loadings

\[\text{inp} = [\text{randn}(800,2)/9+0.5; \text{randn}(1000,2)/6+\text{ones}(1000,2)]; \]

\[Q = \begin{bmatrix} 0.70285 & -0.71134 \\ 0.71134 & 0.70285 \end{bmatrix} \]

\[\lambda = \begin{bmatrix} 0.14425 & 0.00000 \\ 0.00000 & 0.02161 \end{bmatrix} \]

PCA: Total Variance

- The total variance of the m components of the data vector is
 \[\sum_{j=1}^{m} \sigma_{j}^2 = \sum_{j=1}^{m} \lambda_j. \]
- The truncated version with the first l components have variance
 \[\sum_{j=1}^{l} \sigma_{j}^2 = \sum_{j=1}^{l} \lambda_j. \]
- The larger the variance in the truncated version, i.e., the smaller the variance in the remaining components, the more accurate the dimensionality reduction.
PCA vs FA

- **PCA** From \(x \) to \(z \)
 \[z = W^T(x - \mu) \]

- **FA** From \(z \) to \(x \)
 \[x - \mu = Vz + \varepsilon \]

Factor Analysis

- In FA, factors \(z_j \) are stretched, rotated and translated to generate \(x \)

Multidimensional Scaling

- Given pairwise distances between \(N \) points, \(d_{ij}, i,j=1,...,N \)
 place on a low-dim map s.t. distances are preserved.
- \(z = g(x | \theta) \)
 Find \(\theta \) that min Sammon stress

\[
E(\theta | X) = \sum_{r,s} \frac{(\|z_r^s - z_r^s\| - \|x_r^r - x_s^s\|)^2}{\|x_r^r - x_s^s\|^2}
= \sum_{r,s} \frac{(\|g(x_r^r | \theta) - g(x_s^s | \theta)\| - \|x_r^r - x_s^s\|)^2}{\|x_r^r - x_s^s\|^2}
\]

Map of Europe by MDS

Map from CIA – The World Factbook: http://www.cia.gov/
Manifolds

- A topological space that is locally Euclidean (flat, not curved).
- Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.
 - Straight line, wiggly curves, etc. are 1D manifolds.
 - Flat plane, surface of sphere, etc. are 2D manifolds.
- Detecting curvature of space: sum of internal angles of triangle = 180°?

Isomap

- Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

- **Geodesic Distance**
 - Geodesic distance = Shortest path.
 - A: Manifold with two points.
 - B: Euclidean distance between the two points.
 - C: Geodesic distance between the two points.
Isomap

- Instances r and s are connected in the graph if $||x^r - x^s|| < e$ or if x^s is one of the k neighbors of x^r
- The edge length is $||x^r - x^s||$
- For two nodes r and s not connected, the distance is equal to the shortest path between them
- Once the $N \times N$ distance matrix is thus formed, use MDS to find a lower-dimensional mapping

Locally Linear Embedding

1. Given x^r find its neighbors $x^{s_{(r)}}$
2. Find W_{rs} that minimize
$$E(W \mid X) = \sum_r \left\| x^r - \sum_s W_{rs} x^{s_{(r)}} \right\|^2$$
3. Find the new coordinates z^r that minimize
$$E(z \mid W) = \sum_r \left\| z^r - \sum_s W_{rs} z^{s_{(r)}} \right\|^2$$
LLE on Optdigits