Information Theory Review

Topics to be covered:

- Entropy
- Mutual information
- Relative entropy
- Differential entropy of continuous random variables

Motivation

Information-theoretic models that lead to self-organization in a principled manner.

- **Maximum mutual information principle** (Linsker 1988):
 Synaptic connections of a multilayered neural network develop in such a way as to maximize the amount of information preserved when signals are transformed at each processing stage of the network, subject to certain constraints.

- **Redundancy reduction** (Attneave 1954): “Major function of perceptual machinery is to strip away some of the redundancy of stimulation, to describe or encode information in a form more economical than that in which it impinges on the receptors”. In other words, redundancy reduction = feature extraction.

Shannon’s Information Theory

- Originally developed to help design communication systems that are efficient and reliable (Shannon, 1948).
- It is a deep mathematical theory concerned with the essence of the communication process.
- Provides a framework for: efficiency of information representation, limitations in reliable transmission of information over a communication channel.
- Gives bounds on optimum representation and transmission of signals.
Random Variables

- Notations: X random variable, x value of random variable.
- If X can take continuous values, theoretically it can carry infinite amount of information. However, this is meaningless to think of infinite-precision measurement, in most cases values of X can be quantized into a finite number of discrete levels.

$$X = \{x_k|k = 0, \pm 1, \ldots, \pm K\}$$

- Let event $X = x_k$ occur with probability $p_k = P(X = x_k)$ with the requirement

 $$0 \leq p_k \leq 1, \sum_{k=-K}^{K} p_k = 1$$

Uncertainty, Surprise, Information, and Entropy

- If p_k is 1 (i.e., probability of event $X = x_k$ is 1), when $X = x_k$ is observed, there is no surprise. You are also pretty sure about the next outcome ($X = x_k$), so you are more certain (i.e., less uncertain).
 - High probability events are less surprising.
 - High probability events are less uncertain.
 - Thus, surprisal/uncertainty of an event are related to the inverse of the probability of that event.

- You gain information when you go from a high-uncertainty state to a low-uncertainty state.

Entropy

- Uncertainty measure for event $X = x_k$ (log assumes \log_2):

 $$I(x_k) = \log \left(\frac{1}{p_k}\right) = -\log p_k.$$

 - $I(x_k) = 0$ when $p_k = 1$ (no uncertainty, no surprisal).
 - $I(x_k) \geq 0$ for $0 \leq p_k \leq 1$: no negative uncertainty.
 - $I(x_k) > I(x_i)$ for $p_k < p_i$: more uncertain for less probable events.

- Average uncertainty = **Entropy** of a random variable:

 $$H(X) = E[I(x_k)] = \sum_{k=-K}^{K} p_k I(x_k) = -\sum_{k=-K}^{K} p_k \log p_k$$

Properties of Entropy

- The higher the $H(X)$, the higher the potential information you can gain through observation/measurement.

- Bounds on the entropy:

 $$0 \leq H(X) \leq \log(2K + 1)$$

 - $H(X) = 0$ when $p_k = 1$ and $p_j = 0$ for $j \neq k$: No uncertainty.
 - $H(X) = \log(2K + 1)$ when $p_k = 1/(2K + 1)$ for all k: Maximum uncertainty, when all events are equiprobable.
Properties of Entropy (cont’d)

- Max entropy when \(p_k = \frac{1}{2K + 1} \) for all \(k \) follows from
 \[
 \sum_k p_k \log \left(\frac{p_k}{q_k} \right) \geq 0
 \]
 for two probability distributions \(\{p_k\} \) and \(\{q_k\} \), with the equality holding when \(p_k = q_k \) for all \(k \). (Multiply both sides with -1.)

- Kullback-Leibler divergence (relative entropy):
 \[
 D_{p\|q} = \sum_{x \in \mathcal{X}} p_X(x) \log \left(\frac{p_X(x)}{q_X(x)} \right)
 \]
 measures how different two probability distributions are (note that it is not symmetric, i.e., \(D_{p\|q} \neq D_{q\|p} \)).

Differential Entropy of Cont. Rand. Variables

- Differential entropy:
 \[
 h(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx = -E[\log f_X(x)]
 \]

- Note that \(H(X) \), in the limit, does not equal \(h(X) \):
 \[
 H(X) = \lim_{\delta x \to 0} \sum_{k=-\infty}^{\infty} f_X(x_k) \delta x \log(f_X(x)\delta x)
 \]
 \[
 = -\lim_{\delta x \to 0} \left[\sum_{k=-\infty}^{\infty} f_X(x_k) \log(f_X(x))\delta x \right]
 \]
 \[
 = -\int_{-\infty}^{\infty} f_X(x) \log(f_X(x)) dx
 \]
 \[
 = h(X) - \lim_{\delta x \to 0} \log \delta x
 \]

Properties of Differential Entropy

- \(h(X + c) = h(X) \)
- \(h(aX) = h(X) + \log |a| \)
 \[
 f_Y(y) = \frac{1}{|a|} f_X \left(\frac{y}{a} \right)
 \]
 \[
 h(Y) = -E[\log f_Y(y)]
 \]
 \[
 = -E \left[\log \left(\frac{1}{|a|} f_X \left(\frac{y}{a} \right) \right) \right]
 \]
 \[
 = -E \left[\log f_Y \left(\frac{y}{a} \right) \right] + \log |a|.
 \]

Plugging in \(Y = aX \) to the above, we get the desired result.
- For vector random variable \(\mathbf{X} \),
 \[
 h(\mathbf{A} \mathbf{X}) = h(\mathbf{X}) + \log |\det(\mathbf{A})|.
 \]
Maximum Entropy Principle

• When choosing a probability model given a set of known states of a stochastic system and constraints, there could be potentially an infinite number of choices. Which one to choose?

• Jaynes (1957) proposed the maximum entropy principle:
 – Pick the probability distribution that maximizes the entropy, subject to constraints on the distribution.

One Dimensional Gaussian Dist.

• Stating the problem in an constrained optimization framework, we can get interesting general results.
• For a given variance σ^2, the Gaussian random variable has the largest differential entropy attainable by any random variable.
• The entropy of a Gaussian random variable X is uniquely determined by the variance of X.

Mutual Information

• **Conditional entropy**: What is the entropy in X after observing Y? How much uncertainty remains in X after observing Y?

 \[
 H(X|Y) = H(X, Y) - H(Y)
 \]

 where the joint-entropy is defined as

 \[
 H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)
 \]

• **Mutual information**: How much uncertainty is reduced in X when we observe Y? The amount of reduced uncertainty is equal to the amount of information we gained!

 \[
 I(X; Y) = H(X) - H(X|Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}
 \]

Mutual Information for Continuous Random Variables

• In analogy with the discrete case:

 \[
 I(X; Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \log \left(\frac{f_X(x|y)}{f_X(x)} \right) dx dy
 \]

• And it has the same property

 \[
 I(X; Y) = h(X) - h(X|Y) = \frac{h(Y) - h(Y|X)}{2} = h(X) + h(Y) - h(X,Y)
 \]
Summary

• Various relationships among entropy, conditional entropy, joint entropy, and mutual information can be summarized as shown above.

Properties of KL Divergence

• It is always positive or zero. Zero, when there is a perfect match between the two distributions.

• It is invariant w.r.t.
 – Permutation of the order in which the components of the vector random variable \(\mathbf{x} \) are arranged.
 – Amplitude scaling.
 – Monotonic nonlinear transformation.

• It is related to mutual information:

\[
I(\mathbf{X}; \mathbf{Y}) = D_{\mathcal{F}_{\mathbf{X}, \mathbf{Y}}} \| \mathcal{F}_{\mathbf{X}} \mathcal{F}_{\mathbf{Y}}
\]

Application of Information Theory to Neural Network Learning

• We can use mutual information as an objective function to be optimized when developing learning rules for neural networks.

Mutual Information as an Objective Function

• (a) Maximize mutual info between input vector \(\mathbf{X} \) and output vector \(\mathbf{Y} \).

• (b) Maximize mutual info between \(Y_a \) and \(Y_b \) driven by near-by input vectors \(X_a \) and \(X_b \) from a single image.
Mutual Info. as an Objective Function (cont’d)

- Minimize information between Y_a and Y_b driven by input vectors from different images.
- Minimize statistical dependence between Y_i's.

Example: Single Neuron + Output Noise

- Single neuron with additive output noise:
 \[Y = \left(\sum_{i=1}^{m} w_i X_i \right) + N, \]
 where Y is the output, w_i the weight, X_i the input, and N the processing noise.
- Assumptions:
 - Output Y is a Gaussian r.v. with variance σ_Y^2.
 - Noise N is also a Gaussian r.v. with $\mu = 0$ and variance σ_N^2.
 - Input and noise are uncorrelated: $E[X_i N] = 0$ for all i.

Maximum Mutual Information Principle

- Appealing as the basis for statistical signal processing.
- Infomax provides a mathematical framework for self-organization.
- Relation to channel capacity, which defines the Shannon limit on the rate of information transmission through a communication channel.

Ex.: Single Neuron + Output Noise (cont’d)

- Mutual information between input and output:
 \[I(Y; X) = h(Y) - h(Y|X). \]
- Since $P(Y|X) = c + P(N)$, where c is a constant,
 \[h(Y|X) = h(N). \]
 Given X, what remains in Y is just noise N. So, we get
 \[I(Y; X) = h(Y) - h(N). \]
Ex.: Single Neuron + Output Noise (cont’d)

- Since both Y and N are Gaussian,

 \[h(Y) = \frac{1}{2} \left[1 + \log(2\pi \sigma_Y^2) \right] \]

 \[h(N) = \frac{1}{2} \left[1 + \log(2\pi \sigma_N^2) \right] \]

- So, finally we get:

 \[I(Y; X) = \frac{1}{2} \log \left(\frac{\sigma_Y^2}{\sigma_N^2} \right) \]

- The ratio σ_Y^2 / σ_N^2 can be viewed as a signal-to-noise ratio. If noise variance σ_N^2 is fixed, the mutual information $I(Y; X)$ can be maximized simply by maximizing the output variance σ_Y^2.

Example: Single Neuron + Input Noise

- Single neuron, with noise on each input line:

 \[Y = \sum_{i=1}^m w_i (X_i + N_i) \]

- We can decompose the above to

 \[Y = \sum_{i=1}^m w_i X_i + \sum_{i=1}^m w_i N_i \]

- Call this $N’$

- $N’$ is also a Gaussian distribution, with variance:

 \[\sigma_{N’}^2 = \sum_{i=1}^m w_i^2 \sigma_N^2 \]

Lessons Learned

- Application of Infomax principle is problem-dependent.
- When $\sum_{i=1}^m w_i^2 = 1$, then the two additive noise models behave similarly.
- Assumptions such as Gaussianity need to be justified (it’s hard to calculate mutual information without such tricks).
- Adopting a Gaussian noise model, we can invoke a “surrogate” mutual information computed relatively easily.
Noiseless Network

- Noiseless network that transforms a random vector X of arbitrary distribution to a new random vector Y of different distribution: $Y = WX$.

- Mutual information in this case is: $I(Y; X) = H(Y) - H(Y | X)$.

 With noiseless mapping, $H(Y | X)$ attains the lowest value ($-\infty$).

- However, we can consider the gradient instead:
 $$\frac{\partial I(Y; X)}{\partial W} = \frac{\partial H(Y)}{\partial W}.$$

 Since $H(Y | X)$ is independent of W, it drops out.

- Maximizing mutual information between input and output is equivalent to maximizing entropy in the output, both with respect to the weight matrix W (Bell and Sejnowski 1995).

Infomax and Redundancy Reduction

- In Shannon’s framework, Order and structure = Redundancy.

- Increase in the above reduces uncertainty.

- More redundancy in the signal implies less information conveyed.

- More information conveyed means less redundancy.

- Thus, Infomax principle leads to reduced redundancy in output Y compared to input X.

- When noise is present:
 - Input noise: add redundancy in input to combat noise.
 - Output noise: add more output components to combat noise.
 - High level of noise favors redundancy of representation.
 - Low level of noise favors diversity of representation.

Modeling of a Perceptual System

- Redundancy provides knowledge that enables the brain to build “cognitive maps” or “working models” of the environment (Barlow 1989).

- Reduncany reduction: specific form of Barlow’s hypothesis – early processing is to turn highly redundant sensory input into more efficient factorial code. Outputs become statistically independent.

Principle of Minimum Redundancy

- Sensory signal S, Noisy input X, Recoding system A, noisy output Y.

 $$X = S + N_1$$

 $$Y = AX + N_2$$

- Retinal input includes redundant information. Purpose of retinal coding is to reduce/eliminate the redundant bits of data due to correlations and noise, before sending the signal along the optic nerve.

- Redundancy measure (with channel capacity $C(\cdot)$):

 $$R = 1 - \frac{I(Y; S)}{C(Y)}$$
Principle of Minimum Redundancy (cont’d)

- Objective: find recoder matrix A such that
 $$R = 1 - \frac{I(Y; S)}{C(Y)}$$
 is minimized, subject to the no information loss constraint:
 $$I(Y; X) = I(X; X) - \epsilon.$$

- When S and Y have the same dimensionality and there is no noise, principle of minimum redundancy is equivalent to the Infomax principle.

- Thus, Infomax on input/output lead to redundancy reduction.

Spatially Coherent Features

- Let S denote a signal component common to both Y_a and Y_b. We can then express the outputs in terms of S and some noise:
 $$Y_a = S + N_a$$
 $$Y_b = S + N_b$$
 and further assume that N_a and N_b are independent and zero-mean Gaussian. Also assume S is Gaussian.

- The mutual information then becomes
 $$I(Y_a; Y_b) = h(Y_a) + h(Y_b) - h(Y_a, Y_b).$$

- With $I(Y_a; Y_b) = h(Y_a) + h(Y_b) - h(Y_a, Y_b)$ and
 $$h(Y_a) = \frac{1}{2} \left[1 + \log \left(2\pi \sigma_a^2 \right) \right]$$
 $$h(Y_b) = \frac{1}{2} \left[1 + \log \left(2\pi \sigma_b^2 \right) \right]$$
 $$h(Y_a, Y_b) = 1 + \log(2\pi) + \frac{1}{2} \log |\det(\Sigma)|,$$
 we get
 $$I(Y_a; Y_b) = -\frac{1}{2} \log \left(1 - \rho_{ab}^2 \right).$$
Spatially Coherent Features (cont’d)

- The final results was:
 \[I(Y_a; Y_b) = -\frac{1}{2} \log \left(1 - \rho_{ab}^2\right) \].
- That is, maximizing information is equivalent to maximizing correlation between \(Y_a \) and \(Y_b \), which is intuitively appealing.
- Relation to canonical correlation in statistics:
 - Given random input vectors \(X_a \) and \(X_b \),
 - find two weight vectors \(w_a \) and \(w_b \) so that
 - \(Y_a = w_a^T X_a \) and \(Y_b = w_b^T X_b \) have maximum correlation between them (Anderson 1984).
 - Applications: stereo disparity extraction (Becker and Hinton, 1992).

Independent Components Analysis (ICA)

- Unknown random source vector \(U(n) \):
 \[U = [U_1, U_2, ..., U_m]^T, \]
 where the \(m \) components are supplied by a set of independent sources. Note that we need a series of source vectors.
- \(U \) is transformed by an unknown mixing matrix \(A \):
 \[X = AU, \]
 where
 \[X = [X_1, X_2, ..., X_m]^T. \]

ICA (cont’d)

- When the inputs come from two separate regions, we want to minimize the mutual information between the two outputs (Ukrainec and Haykin, 1992, 1996).
- Applications include when input sources such as different polarizations of the signal are imaged: mutual information between outputs driven by two orthogonal polarizations should be minimized.

Examples from Aapo Hyvarinen’s ICA tutorial:
ICA (cont’d)

Examples from Aapo Hyvarinen’s ICA tutorial:

ICA (cont’d)

• In $X = AU$, both A and U are unknown.

• Task: find an estimate of the inverse of the mixing matrix (the demixing matrix W)

$$Y = WX.$$

The hope is to recover the unknown source U. (A good example is the cocktail party problem.)

This is known as the blind source separation problem.

• Solution: It is actually feasible, but certain ambiguities cannot be resolved: sign, permutation, scaling (variance). Solution can be obtained by enforcing independence among components of Y while adjusting W, thus the name independent components analysis.

ICA: Ambiguities

Consider $X = AU$, and $Y = WX$.

• Permutation: $X = AP^{-1}PU$, where P is a permutation matrix. Permuting U and A in the same way will give the same X.

• Sign: the model is unaffected by multiplication of one of the sources by -1.

• Scaling (variance): estimate scaling up U and scaling down A will give the same X.

ICA: Neural Network View

• The mixer on the left is an unknown physical process.

• The demixer on the right could be seen as a neural network.
ICA: Independence

- Two random variables X and Y are statistically independent when
 \[f_{X,Y}(x,y) = f_X(x)f_Y(y), \]
 where $f(\cdot)$ is the probability density function.

- A weaker form of independence is uncorrelatedness (zero covariance), which is
 \[E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - E[X]E[Y] = 0, \]
 i.e.,
 \[E[XY] = E[X]E[Y]. \]

- Gaussians are bad: When the unknown source is Gaussian, any orthogonal transformation A results in the same Gaussian distribution.

ICA: Non-Gaussianity

- Non-Gaussianity can be used as a measure of independence.

- The intuition is as follows:

\[
X = AU, \quad Y = WX
\]

Consider one component of Y:

\[
Y_i = [W_{i1}, W_{i2}, \ldots, W_{im}]X
\]

\[
Y_i = [W_{i1}, W_{i2}, \ldots, W_{im}]A U
\]

call this Z^T

So, Y_i is a linear combination of random variables U_k

\[
Y_i = \sum_{j=1}^{m} Z_j U_j
\]

so it is more Gaussian than any individual U_k’s.

The Gaussianity is minimized when Y_i equals one of U_k’s (one Z_p is 1 and all the rest 0).

ICA: Measures of Non-Gaussianity

There are several measures of non-Gaussianity

- Kurtosis

- Negentropy

- etc.
ICA: Kurtosis

- Kurtosis is the fourth-order cumulant.
 \[\text{Kurtosis}(Y) = E[Y^4] - 3 \left(E[Y^2] \right)^2. \]
- Gaussian distributions have kurtosis = 0.
- More peaked distributions have kurtosis > 0.
- More flatter distributions have kurtosis < 0.
- **Learning:** Start with random \(W \). Adjust \(W \) and measure change in kurtosis. We can also use gradient-based methods.
- **Drawback:** Kurtosis is sensitive to outliers, and thus not robust.

ICA: Approximation of Negentropy

- Classical method:
 \[J(Y) \approx \frac{1}{2} E[Y^3]^2 + \frac{1}{48} \text{Kurtosis}(Y)^2 \]
 but it is not robust due to the involvement of the kurtosis.
- Another variant:
 \[J(Y) \approx \sum_{k=1}^{p} k_i \left(E[G_i(Y)] - E[G_i(N)] \right)^2 \]
 where \(k_i \)'s are coefficients, \(G_i(\cdot) \)'s are nonquadratic functions, and \(N \) is a zero-mean, unit-variance Gaussian r.v.
- This can be further simplified by
 \[J(Y) \approx (E[G(Y)] - E[G(N)])^2 \]
 \[G_1(Y) = \frac{1}{a_1} \log \cosh a_1 Y, \quad G_2(Y) = -\exp(-Y^2/2). \]

ICA: Negentropy

- Negentropy \(J \) is defined as
 \[J(Y) = H(Y_{\text{gauss}}) - H(Y) \]
 where \(Y_{\text{gauss}} \) is a Gaussian random variable that has the same covariance matrix as \(Y \).
- Negentropy is always non-negative, and it is zero iff \(Y \) is Gaussian.
- Thus, maximizing negentropy is to maximize non-Gaussianity.
- Problem is that estimating negentropy is difficult, and requires the knowledge of the pdfs.

ICA: Minimizing Mutual Information

- We can also aim to minimize mutual information between \(Y_i \)'s.
- This turns out to be equivalent to maximizing negentropy (when \(Y_i \)'s have unit variance).
 \[I(Y_1; Y_2; \ldots; Y_m) = C - \sum_i J(Y_i) \]
 where \(C \) is a constant that does not depend on the weight matrix \(W \).
ICA: Achieving Independence

- Given output vector Y, we want Y_i and Y_j to be statistically independent.
- This can be achieved when $I(Y_i; Y_j) = 0$.
- Another alternative is to make the probability density $f_{Y}(y, W)$ parameterized by the matrix W to approach the factorial distribution:

$$
\tilde{f}_{Y}(y, W) = \prod_{i=1}^{m} \tilde{f}_{Y_i}(y_i, W),
$$

where $\tilde{f}_{Y_i}(y_i, W)$ is the marginal probability density of Y_i.

This can be measured by $D_{f\parallel \tilde{f}}(W)$.

ICA: Learning W

- Learning objective is to minimize the KL divergence $D_{f\parallel \tilde{f}}$.
- We can do gradient descent:

$$
\Delta w_{ik} = -\eta \frac{\partial}{\partial w_{ik}} D_{f\parallel \tilde{f}} = \eta \left((W^{-T})_{ik} - \varphi(y_i)x_k \right).
$$

- The final learning rule, in matrix form, is:

$$
W(n+1) = W(n) + \eta(n) \left[I - \varphi(y(n))y^T(n) \right] W^{-T}(n).
$$

ICA: KL Divergence with Factorial Dist

- The KL divergence can be shown to be:

$$
D_{f\parallel \tilde{f}}(W) = -h(Y) + \sum_{i=1}^{m} \tilde{h}(Y_i).
$$

- Next, we need to calculate the output entropy:

$$
h(Y) = h(WX) = h(X) + \log |\text{det}(W)|.
$$

- Finally, we need to calculate the marginal entropy $\tilde{h}(Y_i)$, which gets tricky. This calculation involves a polynomial activation function $\varphi(y_i)$. See the textbook for details.

ICA Examples