Deep Learning

- CSCE 636 Neural Networks
- Instructor: Yoonsuck Choe

What Is Deep Learning?

- Learning higher level abstractions/representations from data.
- Motivation: how the brain represents sensory information in a hierarchical manner.

The Rise of Deep Learning

Made popular in recent years

- Andrew Ng & Jeff Dean (Google Brain team, 2012).
- Schmidhuber et al.’s deep neural networks (won many competitions and in some cases showed super human performance; 2011–).

Long History (in Hind Sight)

- Fukushima’s Neocognitron (1980).
Fukushima’s Neocognitron

- Appeared in journal *Biological Cybernetics* (1980).
- Multiple layers with local receptive fields.
- S cells (trainable) and C cells (fixed weight).
- Deformation-resistant recognition.

LeCun’s Convolutional Neural Nets

- Convolution kernel (weight sharing) + Subsampling
- Fully connected layers near the end.

Current Trends

- Deep belief networks (based on Boltzmann machine)
- Deep neural networks
- Convolutional neural networks
- Deep Q-learning Network (extensions to reinforcement learning)
- Applications to diverse domains including natural language.
- Lots of open source tools available.

Boltzmann Machine to Deep Belief Nets

- Haykin Chapter 11: Stochastic Methods rooted in statistical mechanics.
Boltzmann Machine

- Stochastic binary machine: +1 or -1.
- Fully connected symmetric connections: \(w_{ij} = w_{ji} \).
- Visible vs. hidden neurons, clamped vs. free-running.
- Goal: Learn weights to model prob. dist of visible units.
- Unsupervised. Pattern completion.

Boltzmann Machine: Energy

- Network state: \(x \) from random variable \(X \).
- \(w_{ij} = w_{ji} \) and \(w_{ii} = 0 \).
- Energy (in analogy to thermodynamics):
 \[
 E(x) = -\frac{1}{2} \sum_i \sum_{j,i \neq j} w_{ji} x_i x_j
 \]

Boltzmann Machine: Prob. of a State \(x \)

- Probability of a state \(x \) given \(E(x) \) follows the Gibbs distribution:
 \[
 P(X = x) = \frac{1}{Z} \exp \left(-\frac{E(x)}{T} \right),
 \]
 - \(Z \): partition function (normalization factor – hard to compute)
 - \(T \): temperature parameter.
 - Low energy states are exponentially more probable.
- With the above, we can calculate
 \[
 P(X_j = x \mid \text{the rest}) = \frac{P(A, B)}{P(B)}
 = \frac{P(A, B)}{\sum_A P(A, B)} = \frac{P(A, B)}{P(A, B) + P(\neg A, B)}
 = \frac{1}{1 + \exp \left(-\frac{4}{T} \sum_{i,i \neq j} w_{ji} x_i \right)}
 = \text{sigmoid} \left(\frac{x}{T} \sum_{i,i \neq j} w_{ji} x_i \right)
 \]
 - Can compute equilibrium state based on the above.
Boltzmann Machine: Gibbs Sampling

- Initialize $x^{(0)}$ to a random vector.
- For $j = 1, 2, ..., n$ (generate n samples $x \sim P(X)$)
 - $x_1^{(j+1)}$ from $p(x_1|x_2^{(j)}, x_3^{(j)}, ..., x_K^{(j)})$
 - $x_2^{(j+1)}$ from $p(x_2|x_1^{(j+1)}, x_3^{(j)}, ..., x_K^{(j)})$
 - $x_3^{(j+1)}$ from $p(x_3|x_1^{(j+1)}, x_2^{(j+1)}, x_4^{(j)}, ..., x_K^{(j)})$
 - ...
 - $x_K^{(j+1)}$ from $p(x_K|x_1^{(j+1)}, x_2^{(j+1)}, x_3^{(j+1)}, ..., x_{K-1}^{(j+1)})$

 \rightarrow One new sample $x^{(j+1)} \sim P(X)$.

- Simulated annealing used (high T to low T) for faster conv.

Boltzmann Learning Rule (1)

- Probability of activity pattern being one of the training patterns (visible unit: subvector x_{α}; hidden unit: subvector x_{β}), given the weight vector w.
 $$P(X_{\alpha} = x_{\alpha})$$

- Log-likelihood of the visible units being any one of the training patterns (assuming they are mutually independent) T:
 $$L(w) = \log \prod_{x_{\alpha} \in T} P(X_{\alpha} = x_{\alpha})$$
 $$= \sum_{x_{\alpha} \in T} \log P(X_{\alpha} = x_{\alpha})$$

- We want to learn w that maximizes $L(w)$.

Boltzmann Learning Rule (2)

- Want to calculate $P(X_{\alpha} = x_{\alpha})$ (probability of finding the visible neurons in state x_{α} with any x_{β}): use energy function.
 $$P(X_{\alpha} = x_{\alpha}) = \sum_{x_{\beta}} P(X_{\alpha} = x_{\alpha}, x_{\beta} = x_{\beta})$$
 $$= \frac{1}{Z} \sum_{x_{\beta}} \exp \left(-\frac{E(x)}{T} \right)$$

 $$\log P(X_{\alpha} = x_{\alpha}) = \log \sum_{x_{\beta}} \exp \left(-\frac{E(x)}{T} \right) - \log Z$$
 $$= \log \sum_{x_{\beta}} \exp \left(-\frac{E(x)}{T} \right) - \log \sum_{x} \exp \left(-\frac{E(x)}{T} \right)$$

- Note: $Z = \sum_{x} \exp \left(-\frac{E(x)}{T} \right)$

Boltzmann Learning Rule (3)

- Finally, we get:
 $$L(w) = \sum_{x_{\alpha} \in T} \left(\log \sum_{x_{\beta}} \exp \left(-\frac{E(x)}{T} \right) - \log \sum_{x} \exp \left(-\frac{E(x)}{T} \right) \right)$$

 $$\frac{\partial L(w)}{\partial w_{ji}} = \frac{1}{T} \sum_{x_{\alpha} \in T} \left(\sum_{x_{\beta}} P(x_{\beta} = x_{\beta}|x_{\alpha} = x_{\alpha}) x_{j} x_{i} - \sum_{x} P(x = x) x_{j} x_{i} \right)$$

- Note that w is involved in:
 $$E(x) = -\frac{1}{2} \sum_{i,j,i \neq j} w_{ji} x_{i} x_{j}$$

- Differentiating $L(w)$ wrt w_{ji}, we get:
Boltzmann Learning Rule (3-2): Some hints

To derive:
\[
\frac{\partial L(w)}{\partial w_{ji}} = \frac{1}{T} \sum_{x_{\alpha} \in T} \left(\sum_{x_{\beta}} P(x_{\beta} = x_{\beta} | x_{\alpha} = x_{\alpha}) x_j x_i \right) - \sum_{x} P(x = x) x_j x_i
\]

\[
\frac{\partial E(x)}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \left(- \frac{1}{2} \sum_i \sum_{j, i \neq j} w_{ji} x_i x_j \right) = - \frac{1}{2} x_i x_j, \ i \neq j
\]

\[P(x_{\beta} = x_{\beta} | x_{\alpha} = x_{\alpha}) = \frac{P(x_{\alpha} = x_{\alpha}, x_{\beta} = x_{\beta})}{P(x_{\alpha} = x_{\alpha})} = \frac{1}{Z} \exp \left(- \frac{E(x)}{T} \right) \]

\[P(x = x) = \frac{1}{Z} \exp \left(- \frac{E(x)}{T} \right) = \frac{\exp \left(- \frac{E(x)}{T} \right)}{\sum_{x} \exp \left(- \frac{E(x)}{T} \right)}
\]

Boltzmann Learning Rule (4)

- Setting:
 \[\rho_{ji}^+ = \sum_{x_{\beta} \in T} \sum_{x_{\alpha}} P(x_{\beta} = x_{\beta} | x_{\alpha} = x_{\alpha}) x_j x_i\]
 \[\rho_{ji}^- = \sum_{x_{\alpha} \in T} \sum_{x} P(x = x) x_j x_i\]

- We get:
 \[\frac{\partial L(w)}{\partial w_{ji}} = \frac{1}{T} \left(\rho_{ji}^+ - \rho_{ji}^- \right)\]

- Attempting to maximize \(L(w)\), we get:
 \[\Delta w_{ji} = \epsilon \frac{\partial L(w)}{\partial w_{ji}} = \eta \left(\rho_{ji}^+ - \rho_{ji}^- \right)\]
 where \(\eta = \frac{\epsilon}{T}\). This is gradient ascent.

Boltzmann Machine Summary

- Theoretically elegant.
- Very slow in practice (especially the unclamped phase).

Logistic (or Directed) Belief Net

- Similar to Boltzmann Machine, but with directed, acyclic connections.
 \[P(x_j = x_j | x_1 = x_1, \ldots, x_{j-1} = x_{j-1}) = P(x_j = x_j | parents(x_j))\]
- Same learning rule:
 \[\Delta w_{ji} = \eta \frac{\partial L(w)}{\partial w_{ji}}\]
- With dense connections, calculation of \(P\) becomes intractable.
Deep Belief Net (1)

- Overcomes issues with Logistic Belief Net. Hinton et al. (2006)
- Based on Restricted Boltzmann Machine (RBM): visible and hidden layers, with layer-to-layer full connection but no within-layer connections.
- RBM Back-and-forth update: update hidden given visible, then update visible given hidden, etc., then train \mathbf{w} based on

$$\frac{\partial L(\mathbf{w})}{\partial w_{ji}} = \rho_{ji}^{(0)} - \rho_{ji}^{(\infty)}$$

Deep Belief Net (2)

Deep Belief Net = Layer-by-layer training using RBM.

Hybrid architecture: Top layer = undirected, lower layers directed.

1. Train RBM based on input to form hidden representation.
2. Use hidden representation as input to train another RBM.
3. Repeat steps 2-3.

Applications: NIST digit recognition.

Deep Convolutional Neural Networks (1)

- Krizhevsky et al. (2012)
- Applied to ImageNet competition (1.2 million images, 1,000 classes).
- Network: 60 million parameters and 650,000 neurons.
- Top-1 and top-5 error rates of 37.5% and 17.0%.
- Trained with backprop.

Deep Convolutional Neural Networks (2)

- Learned kernels (first convolutional layer).
- Resembles mammalian RFs: oriented Gabor patterns, color opponency (red-green, blue-yellow).
Deep Convolutional Neural Networks (3)

- Left: Hits and misses and close calls.
- Right: Test (1st column) vs. training images with closest hidden representation to the test data.

Deep Q-Network (DQN)

- Latest application of deep learning to a reinforcement learning domain (Q as in Q-learning).
- Applied to Atari 2600 video game playing.

DQN Overview

- Input preprocessing
- Experience replay (collect and replay state, action, reward, and resulting state)
- Delayed (periodic) update of Q.
- Moving target \hat{Q} value used to compute error (loss function L, parameterized by weights θ_i).
 - Gradient descent:
 $$\frac{\partial L}{\partial \theta_i}$$

- Input: video screen; Output: $Q(s, a)$; Reward: game score.
- $Q(s, a)$: action-value function
 - Value of taking action a when in state s.
DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q' with weights $\theta' = \theta$

For episode $= 1, M$ do
 Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$
 For $t = 1, T$ do
 With probability ϵ select a random action a_t
 otherwise select $a_t = \arg \max_a Q(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D
 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D
 Set $y_j = \begin{cases} r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta') & \text{if episode terminates at step } j + 1 \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta') & \text{otherwise} \end{cases}$
 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ
 Every C steps reset $\hat{Q} = Q$
End For
End For

DQN Results

- Superhuman performance on over half of the games.

DQN Hidden Layer Representation (t-SNE map)

- Similar perception, similar reward clustered.

DQN Operation

- Value vs. game state; Game state vs. action value.
Deep Learning Tools

- Kaffe: UC Berkeley’s deep learning tool box
- Google TensorFlow
- Microsoft CNTK (Computational Network Tool Kit)
- Other: Apache Mahout (MapReduce-based ML)

Summary

- Deep convolutional networks: High computational demand, over the board great performance.
- Flood of deep learning tools available.