Historical Overview

- Widrow and Hoff (1960): adaptive filters using least-mean-square (LMS) algorithm (delta rule).

Multiple Faces of a Single Neuron

What a single neuron does can be viewed from different perspectives:

- Adaptive filter: as in signal processing
- Classifier: as in perceptron

The two aspects will be reviewed, in the above order.

Part I: Adaptive Filter
Adaptive Filtering Problem

- Consider an unknown dynamical system, that takes \(m \) inputs and generates one output.
- Behavior of the system described as its input/output pair:
 \[T : \{ x(i), d(i); i = 1, 2, \ldots, n, \ldots \} \]
 where \(x(i) = [x_1(i), x_2(i), \ldots, x_m(i)]^T \)
 is the input and \(d(i) \) the desired response (or target signal).
- Input vector can be either a spatial snapshot or a temporal sequence uniformly spaced in time.
- There are two important processes in adaptive filtering:
 - Filtering process: generation of output based on the input:
 \[y(i) = x^T(i)w(i). \]
 - Adapative process: automatic adjustment of weights to reduce error:
 \[e(i) = d(i) - y(i). \]

Steepest Descent

- We want the iterative update algorithm to have the following property:
 \[E(w(n + 1)) < E(w(n)) \]
- Define the gradient vector \(\nabla E(w) \) as \(g \).
- The iterative weight update rule then becomes:
 \[w(n + 1) = w(n) - \eta g(n) \]
 where \(\eta \) is a small learning-rate parameter. So we can say,
 \[\Delta w(n) = w(n + 1) - w(n) = -\eta g(n) \]

Unconstrained Optimization Techniques

- How can we adjust \(w(i) \) to gradually minimize \(e(i) \)? Note that
 \[e(i) = d(i) - y(i) = d(i) - x^T(i)w(i). \]
 Since \(d(i) \) and \(x(i) \) are fixed, only the change in \(w(i) \) can change \(e(i) \).
- In other words, we want to minimize the cost function \(E(w) \) with respect to the weight vector \(w \): Find the optimal solution \(w^* \).
- The necessary condition for optimality is
 \[\nabla E(w^*) = 0, \]
 where the gradient operator is defined as
 \[\nabla = \left[\frac{\partial}{\partial w_1}, \frac{\partial}{\partial w_2}, \ldots, \frac{\partial}{\partial w_m} \right]^T \]
 With this, we get
 \[\nabla E(w^*) = \left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \ldots, \frac{\partial E}{\partial w_m} \right]^T = 0. \]

Steepest Descent (cont’d)

We now check if \(E(w(n + 1)) < E(w(n)) \).

Using first-order Taylor expansion\(^\dagger\) of \(E(\cdot) \) near \(w(n) \),
\[E(w(n + 1)) \approx E(w(n)) + g^T(n)\Delta w(n) \]
and \(\Delta w(n) = -\eta g(n) \), we get
\[E(w(n + 1)) \approx E(w(n)) - \eta g^T(n)g(n) \]
\[= E(w(n)) - \eta \|g(n)\|^2. \]
So, it is indeed (for small \(\eta \)):
\[E(w(n + 1)) < E(w(n)). \]

\(^\dagger\) Taylor series:
\[f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x-a)^2}{2!} + \ldots. \]
Steepest Descent: Example

- Convergence to optimal w is very slow.
- Small η: overdamped, smooth trajectory
- Large η: underdamped, jagged trajectory
- η too large: algorithm becomes unstable

9

Steepest Descent: Another Example

For $f(x) = f(x, y) = x^2 + y^2$,
$\nabla f(x, y) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]^T = [2x, 2y]^T$. Note that (1) the gradient vectors are pointing upward, away from the origin, (2) length of the vectors are shorter near the origin. If you follow $-\nabla f(x, y)$, you will end up at the origin. We can see that the gradient vectors are perpendicular to the level curves.

* The vector lengths were scaled down by a factor of 10 to avoid clutter.

10

Newton’s Method

- Newton’s method is an extension of steepest descent, where the second-order term in the Taylor series expansion is used.
- It is generally faster and shows a less erratic meandering compared to the steepest descent method.
- There are certain conditions to be met though, such as the Hessian matrix $\nabla^2 \mathcal{E}(w)$ being positive definite (for an arbitrary $x, x^T H x > 0$).

Gauss-Newton Method

- Applicable for cost-functions expressed as sum of error squares:

$$\mathcal{E}(w) = \frac{1}{2} \sum_{i=1}^{n} e_i(w)^2,$$

where $e_i(w)$ is the error in the i-th trial, with the weight w.
- Recalling the Taylor series $f(x) = f(a) + f'(a)(x - a)…$, we can express $e_i(w)$ evaluated near $e_i(w_k)$ as

$$e_i(w) = e_i(w_k) + J e_i(w_k)(w - w_k).$$

- In matrix notation, we get:

$$e(w) = e(w_k) + J e(w_k)(w - w_k).$$

* We will use a slightly different notation than the textbook, for clarity.
Gauss-Newton Method (cont’d)

- $J_e(w)$ is the Jacobian matrix, where each row is the gradient of $e_i(w)$:

$$J_e(w) = \begin{bmatrix} \frac{\partial e_1}{\partial w_1} & \frac{\partial e_1}{\partial w_2} & \cdots & \frac{\partial e_1}{\partial w_n} \\ \frac{\partial e_2}{\partial w_1} & \frac{\partial e_2}{\partial w_2} & \cdots & \frac{\partial e_2}{\partial w_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial e_n}{\partial w_1} & \frac{\partial e_n}{\partial w_2} & \cdots & \frac{\partial e_n}{\partial w_n} \end{bmatrix} = \begin{bmatrix} (\nabla e_1(w))^T \\ (\nabla e_2(w))^T \\ \vdots \\ (\nabla e_n(w))^T \end{bmatrix}$$

- We can then evaluate $J_e(w_k)$ by plugging in actual values of w_k into the Jacobian matrix above.

Gauss-Newton Method (cont’d)

- Again, starting with $e(w) = e(w_k) + J_e(w_k)(w - w_k)$, what we want is to set w so that the error approaches 0.

- That is, we want to minimize the norm of $e(w)$:

$$\|e(w)\|^2 = \|e(w_k)\|^2 + 2e(w_k)^T J_e(w_k)(w - w_k) + (w - w_k)^T J_e^T(w_k) J_e(w_k)(w - w_k).$$

- Differentiating the above wrt w and setting the result to 0, we get

$$J_e^T(w_k) e(w_k) + J_e^T(w_k) J_e(w_k) (w - w_k) = 0,$$

from which we get

$$w = w_k - (J_e^T(w_k) J_e(w_k))^{-1} J_e^T(w_k) e(w_k).$$

- $J_e^T(w_k) J_e(w_k)$ needs to be nonsingular (inverse is needed).

Quick Example: Jacobian Matrix

- Given

$$e(x, y) = \begin{bmatrix} e_1(x, y) \\ e_2(x, y) \end{bmatrix} = \begin{bmatrix} x^2 + y^2 \\ \cos(x) + \sin(y) \end{bmatrix},$$

- The Jacobian of $e(x, y)$ becomes

$$J_e(x, y) = \begin{bmatrix} \frac{\partial e_1}{\partial x} & \frac{\partial e_1}{\partial y} \\ \frac{\partial e_2}{\partial x} & \frac{\partial e_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x & 2y \\ -\sin(x) & \cos(y) \end{bmatrix}.$$

- For $(x, y) = (0.5\pi, \pi)$, we get

$$J_e(0.5\pi, \pi) = \begin{bmatrix} \pi & 2\pi \\ -\sin(0.5\pi) & \cos(\pi) \end{bmatrix} = \begin{bmatrix} \pi & 2\pi \\ -1 & -1 \end{bmatrix}.$$

Linear Least-Square Filter

- Given m input and 1 output function $y(i) = \phi(x_i^T w_i)$ where $\phi(x) = x$, i.e., it is linear, and a set of training samples $\{x_i, d_i\}_{i=1}^n$, we can define the error vector for an arbitrary weight w as

$$e(w) = d - [x_1, x_2, \ldots, x_n]^T w.$$

where $d = [d_1, d_2, \ldots, d_n]^T$. Setting $X = [x_1, x_2, \ldots, x_n]^T$, we get: $e(w) = d - Xw$.

- Differentiating the above wrt w, we get $\nabla e(w) = -X^T$. So, the Jacobian becomes $J_e(w) = (\nabla e(w))^T = -X$.

- Plugging this in to the Gauss-Newton equation, we finally get:

$$w = w_k + (X^T X)^{-1} X^T (d - X w_k) = w_k + (X^T X)^{-1} X^T d - (X^T X)^{-1} X^T X w_k$$

This is $I w_k = w_k$.

$$= (X^T X)^{-1} X^T d.$$
Linear Least-Square Filter (cont’d)

Points worth noting:

- \(X \) does not need to be a square matrix!
- We get \(w = (X^T X)^{-1} X^T d \) off the bat partly because the output is linear (otherwise, the formula would be more complex).
- The Jacobian of the error function only depends on the input, and is invariant wrt the weight \(w \).
- The factor \((X^T X)^{-1} X^T \) (let’s call it \(X^+ \)) is like an inverse. Multiply \(X^+ \) to both sides of \(d = Xw \) then we get:
 \[
 w = X^+ d = X^+ X w = I w.
 \]

Least-Mean-Square Algorithm

- Cost function is based on instantaneous values.
 \[
 E(w) = \frac{1}{2} e^2(w)
 \]
- Differentiating the above wrt \(w \), we get
 \[
 \frac{\partial E(w)}{\partial w} = e(w) \frac{\partial e(w)}{\partial w}.
 \]
- Pluggin in \(e(w) = d - x^T w \),
 \[
 \frac{\partial e(w)}{\partial w} = -x, \text{ and hence } \frac{\partial E(w)}{\partial w} = -xe(w).
 \]
- Using this in the steepest descent rule, we get the LMS algorithm:
 \[
 \hat{w}_{n+1} = \hat{w}_n + \eta x_n e_n.
 \]
- Note that this weight update is done with only one \((x_i, d_i)\) pair!

Least-Mean-Square Algorithm: Example

See src/pseudoinv.m.

\[
X = \text{ceil}(\text{rand}(4,2) \times 10), \ wtrue = \text{rand}(2,1) \times 10, \ d = X \times \text{wtrue}, \ w = \text{inv}(X' \times X) \times X' \times d
\]

\[
X =
\begin{bmatrix}
10 & 7 \\
3 & 7 \\
3 & 6 \\
5 & 4
\end{bmatrix}
\]

\[
wtrue =
\begin{bmatrix}
0.56644 \\
4.99120
\end{bmatrix}
\]

\[
d =
\begin{bmatrix}
40.603 \\
36.638 \\
31.647 \\
22.797
\end{bmatrix}
\]

\[
w =
\begin{bmatrix}
0.56644 \\
4.99120
\end{bmatrix}
\]

Least-Mean-Square Algorithm: Evaluation

- LMS algorithm behaves like a low-pass filter.
- LMS algorithm is simple, model-independent, and thus robust.
- LMS does not follow the direction of steepest descent: Instead, it follows it stochastically (stochastic gradient descent).
- Slow convergence is an issue.
- LMS is sensitive to the input correlation matrix’s condition number (ratio between largest vs. smallest eigenvalue of the correl. matrix).
- LMS can be shown to converge if the learning rate has the following property:
 \[
 0 < \eta < \frac{2}{\lambda_{\text{max}}}
 \]
 where \(\lambda_{\text{max}} \) is the largest eigenvalue of the correl. matrix.
Improving Convergence in LMS

- The main problem arises because of the fixed η.
- One solution: Use a time-varying learning rate: $\eta(n) = c/n$, as in stochastic optimization theory.
- A better alternative: use a hybrid method called search-then-converge.

$$
\eta(n) = \frac{\eta_0}{1 + (n/\tau)}
$$

When $n < \tau$, performance is similar to standard LMS. When $n > \tau$, it behaves like stochastic optimization.

Search-Then-Converge in LMS

$$
\eta(n) = \frac{\eta_0}{n} \quad \text{vs.} \quad \eta(n) = \frac{\eta_0}{1 + (n/\tau)}
$$

The Perceptron Model

- Perceptron uses a non-linear neuron model (McCulloch-Pitts model).

$$
v = \sum_{i=1}^{m} w_i x_i + b, \quad y = \phi(v) = \begin{cases}
1 & \text{if } v > 0 \\
0 & \text{if } v \leq 0
\end{cases}
$$

- Goal: classify input vectors into two classes.
Perceptrons can represent basic boolean functions.

Thus, a network of perceptron units can compute any Boolean function.

What about XOR or EQUIV?

Perceptrons can only represent **linearly separable** functions.

Output of the perceptron:

\[W_0 \times I_0 + W_1 \times I_1 - t > 0, \text{ then output is 1} \]

\[W_0 \times I_0 + W_1 \times I_1 - t \leq 0, \text{ then output is 0} \]

Rearranging

\[W_0 \times I_0 + W_1 \times I_1 - t > 0, \text{ then output is 1,} \]

we get (if \(W_1 > 0 \))

\[I_1 > \frac{-W_0}{W_1} \times I_0 + \frac{t}{W_1}, \]

where points above the line, the output is 1, and 0 for those below the line.

Compare with

\[y = \frac{-W_0}{W_1} \times x + \frac{t}{W_1}. \]
Limitation of Perceptrons

• Only functions where the 0 points and 1 points are clearly linearly separable can be represented by perceptrons.

• The geometric interpretation is generalizable to functions of \(n \) arguments, i.e. perceptron with \(n \) inputs plus one threshold (or bias) unit.

Generalizing to \(n \)-Dimensions

\[\mathbf{n} = (a, b, c), \quad \mathbf{x} = (x, y, z), \quad \mathbf{x}_0 = (x_0, y_0, z_0). \]

• Equation of a plane: \(\mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_0) = 0 \)

• In short, \(ax + by + cz + d = 0 \), where \(a, b, c \) can serve as the weight, and \(d = -\mathbf{n} \cdot \mathbf{x}_0 \) as the bias.

• For \(n \)-D input space, the decision boundary becomes a \((n - 1)\)-D hyperplane (1-D less than the input space).

Linear Separability

• For functions that take integer or real values as arguments and output either 0 or 1.

• Left: linearly separable (i.e., can draw a straight line between the classes).

• Right: not linearly separable (i.e., perceptrons cannot represent such a function)

Linear Separability (cont’d)

• Perceptrons cannot represent XOR!

• Minsky and Papert (1969)
XOR in Detail

<table>
<thead>
<tr>
<th>#</th>
<th>I_0</th>
<th>I_1</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$W_0 \times I_0 + W_1 \times I_1 - t > 0$, then output is 1:
1. $-t \leq 0 \rightarrow t \geq 0$
2. $W_1 - t > 0 \rightarrow W_1 > t$
3. $W_0 - t > 0 \rightarrow W_0 > t$
4. $W_0 + W_1 - t \leq 0 \rightarrow W_0 + W_1 \leq t$

$2t < W_0 + W_1 < t$ (from 2, 3, and 4), but $t \geq 0$ (from 1), a contradiction.

Perceptron Learning Rule

- Given a linearly separable set of inputs that can belong to class C_1 or C_2.
- The goal of perceptron learning is to have
 $$w^T x > 0 \text{ for all input in class } C_1$$
 $$w^T x \leq 0 \text{ for all input in class } C_2$$
- If all inputs are correctly classified with the current weights $w(n)$,
 $$w(n)^T x > 0, \text{ for all input in class } C_1, \text{ and}$$
 $$w(n)^T x \leq 0, \text{ for all input in class } C_2,$$
 then $w(n + 1) = w(n)$ (no change).
- Otherwise, adjust the weights.

Perceptron Learning Rule (cont’d)

For misclassified inputs ($\eta(n)$ is the learning rate):

- $w(n + 1) = w(n) - \eta(n)x(n)$ if $w^T x > 0$ and $x \in C_2$.
- $w(n + 1) = w(n) + \eta(n)x(n)$ if $w^T x \leq 0$ and $x \in C_1$.

Or, simply $x(n + 1) = w(n) + \eta(n)e(n)x(n)$, where $e(n) = d(n) - y(n)$ (the error).
• When a positive example \((C_1)\) is misclassified,
\[w(n + 1) = w(n) + \eta(n)x(n). \]

• When a negative example \((C_2)\) is misclassified,
\[w(n + 1) = w(n) - \eta(n)x(n). \]

• Note the tilt in the weight vector, and observe how it would change
the decision boundary.

Perceptron Convergence Theorem (cont’d)

- Using Cauchy-Schwartz inequality
\[\|w_0\|^2 \|w(n + 1)\|^2 \geq \left[w_0^T w(n + 1)\right]^2 \]

- From the above and
\[w_0^T w(n + 1) > n\alpha, \]
\[\|w_0\|^2 \|w(n + 1)\|^2 \geq n^2\alpha^2 \]

So, finally, we get
\[\|w(n + 1)\|^2 \geq \frac{n^2\alpha^2}{\|w_0\|^2} \]

First main result

Perceptron Convergence Theorem (cont’d)

- Taking the Euclidean norm of \(w(k + 1) = w(k) + x(k)\),
\[\|w(k + 1)\|^2 = \|w(k)\|^2 + 2w^T(k)x(k) + \|x(k)\|^2 \]

- Since all \(n\) inputs in \(C_1\) are misclassified,
\[w^T(k)x(k) \leq 0 \] for
\[k = 1, 2, \ldots, n, \]
\[\|w(k + 1)\|^2 - \|w(k)\|^2 - \|x(k)\|^2 = 2w^T(k)x(k) \leq 0, \]
\[\|w(k + 1)\|^2 \leq \|w(k)\|^2 + \|x(k)\|^2 \]
\[\|w(k + 1)\|^2 - \|w(k)\|^2 \leq \|x(k)\|^2 \]

- Summing up the inequalities for all
\[k = 1, 2, \ldots, n, \] and
\[w(0) = 0, \]
we get
\[\|w(k + 1)\|^2 \leq \sum_{k=1}^{n} \|x(k)\|^2 \leq n\beta, \]

where \(\beta = \max_{x(k) \in C_1} \|x(k)\|^2\).
Perceptron Convergence Theorem (cont’d)

- From eq. 4 and eq. 5,
 \[\frac{n^2 \alpha^2}{\|w_0\|^2} \leq \|w(n + 1)\|^2 \leq n\beta \]

- Here, \(\alpha \) is a constant, depending on the fixed input set and the fixed solution \(w_0 \) (so, \(\|w_0\| \) is also a constant), and \(\beta \) is also a constant since it depends only on the fixed input set.

- In this case, if \(n \) grows to a large value, the above inequality will become invalid (\(n \) is a positive integer).

- Thus, \(n \) cannot grow beyond a certain \(n_{\text{max}} \), where
 \[\frac{n_{\text{max}}^2 \alpha^2}{\|w_0\|^2} = n_{\text{max}} \beta \]
 \[n_{\text{max}} = \frac{\beta \|w_0\|^2}{\alpha^2} \]
 and when \(n = n_{\text{max}} \), all inputs will be correctly classified.

Fixed-Increment Convergence Theorem

Let the subsets of training vectors \(C_1 \) and \(C_2 \) be linearly separable. Let the inputs presented to perceptron originate from these two subsets.

The perceptron converges after some \(n_0 \) iterations, in the sense that
 \[w(n_0) = w(n_0 + 1) = w(n_0 + 2) = \ldots \]
 is a solution vector for \(n_0 \leq n_{\text{max}} \).

Summary

- Adaptive filter using the LMS algorithm and perceptrons are closely related (the learning rule is almost identical).

- LMS and perceptrons are different, however, since one uses linear activation and the other hard limiters.

- LMS is used in continuous learning, while perceptrons are trained for only a finite number of steps.

- Single-neuron or single-layer has severe limits: How can multiple layers help?
XOR with Multilayer Perceptrons

Note: the bias units are not shown in the network on the right, but they are needed.

- Only three perceptron units are needed to implement XOR.
- However, you need two layers to achieve this.