Haykin Chapter 6: Support-Vector Machines

Introduction

- Support vector machine is a linear machine with some very nice properties.
- The basic idea of SVM is to construct a separating hyperplane where the margin of separation between positive and negative examples are maximized.
- Principled derivation: structural risk minimization
 - error rate is bounded by: (1) training error-rate and (2) VC-dimension of the model.
 - SVM makes (1) become zero and minimizes (2).

Optimal Hyperplane

For linearly separable patterns \(\{(x_i, d_i)\}_{i=1}^{N} \) (with \(d_i \in \{+1, -1\} \)):

- The separating hyperplane is \(w^T x + b = 0 \):
 \[
 w^T x + b \geq 0 \quad \text{for} \quad d_i = +1

 w^T x + b < 0 \quad \text{for} \quad d_i = -1
 \]

- Let \(w_o \) be the optimal hyperplane and \(b_o \) the optimal bias.

Distance to the Optimal Hyperplane

- From \(w_o^T x = -b_o \), the distance from the origin to the hyperplane is calculated as
 \[
 d = \|x_i\| \cos(x_i, w_o) = \frac{-b_o}{\|w_o\|}
 \]
The distance from an arbitrary point to the hyperplane can be calculated as:

- When the point is in the positive area:
 \[r = \|x\| \cos(x, w_o) - d = \frac{x^T w_o + b_o}{\|w_o\|} = \frac{x^T w_o + b_o}{\|w_o\|}. \]

- When the point is in the negative area:
 \[r = d - \|x\| \cos(x, w_o) = -\frac{x^T w_o + b_o}{\|w_o\|} = -\frac{x^T w_o + b_o}{\|w_o\|}. \]

Optimal Hyperplane and Support Vectors (cont’d)

- The optimal hyperplane is supposed to maximize the margin of separation \(\rho \).

- With that requirement, we can write the conditions that \(w_o \) and \(b_o \) must meet:
 \[w_o^T x + b_o \geq +1 \quad \text{for} \quad d_i = +1 \]
 \[w_o^T x + b_o \leq -1 \quad \text{for} \quad d_i = -1 \]

 Note: \(\geq +1 \) and \(\leq -1 \), and support vectors are those \(x^{(s)} \) where equality holds (i.e., \(w_o^T x^{(s)} + b_o = +1 \) or \(-1 \)).

- Since \(r = (w_o^T x + b_o) / \|w_o\| \),
 \[r = \begin{cases}
 1/\|w_o\| & \text{if} \ d = +1 \\
 -1/\|w_o\| & \text{if} \ d = -1
 \end{cases} \]

 \(\rho = 2r = \frac{2}{\|w_o\|}. \)

 Thus, maximizing the margin of separation between two classes is equivalent to minimizing the Euclidean norm of the weight \(w_o \)!
Primal Problem: Constrained Optimization

For the training set \(T = \{ (x_i, d_i) \}_{i=1}^N \) find \(w \) and \(b \) such that

- they minimize a certain value \((1/\rho)\) while satisfying a constraint (all examples are correctly classified):
 - Constraint: \(d_i (w^T x_i + b) \geq 1 \) for \(i = 1, 2, ..., N \).
 - Cost function: \(\Phi(w) = \frac{1}{2} w^T w \).

This problem can be solved using the method of Lagrange multipliers (see next two slides).

Mathematical Aside: Lagrange Multipliers

Turn a constrained optimization problem into an unconstrained optimization problem by absorbing the constraints into the cost function, weighted by the Lagrange multipliers.

Example: Find closest point on the circle \(x^2 + y^2 = 1 \) to the point \((2, 3)\) (adapted from Ballard, *An Introduction to Natural Computation*, 1997, pp. 119–120).

- Minimize \(F(x, y) = (x - 2)^2 + (y - 3)^2 \) subject to the constraint \(x^2 + y^2 - 1 = 0 \).
- Absorb the constraint into the cost function, after multiplying the Lagrange multiplier \(\alpha \):
 \[
 F(x, y, \alpha) = (x - 2)^2 + (y - 3)^2 + \alpha(x^2 + y^2 - 1).
 \]

Lagrange Multipliers (cont’d)

Must find \(x, y, \alpha \) that minimizes \(F(x, y, \alpha) = (x - 2)^2 + (y - 2)^2 + \alpha(x^2 + y^2 - 1) \). Set the partial derivatives to 0, and solve the system of equations.

\[
\begin{align*}
\frac{\partial F}{\partial x} &= 2(x - 2) + 2\alpha x = 0 \\
\frac{\partial F}{\partial y} &= 2(y - 2) + 2\alpha y = 0 \\
\frac{\partial F}{\partial \alpha} &= x^2 + y^2 - 1 = 0
\end{align*}
\]

Solve for \(x \) and \(y \) in the 1st and 2nd, and plug those into the 3rd equation

\[
x = y = \frac{2}{1 + \alpha}, \text{ so } \left(\frac{2}{1 + \alpha} \right)^2 + \left(\frac{2}{1 + \alpha} \right)^2 = 1
\]

from which we get \(\alpha = 2\sqrt{2} - 1 \). Thus, \((x, y) = (1/\sqrt{2}, 1/\sqrt{2})\).

Primal Problem: Constrained Optimization (cont’d)

Putting the constrained optimization problem into the Lagrangian form, we get (utilizing the Kunh-Tucker theorem)

\[
J(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^N \alpha_i \left[d_i (w^T x_i + b) - 1 \right].
\]

- From \(\frac{\partial J(w, b, \alpha)}{\partial w} = 0 \):
 \[w = \sum_{i=1}^N \alpha_i d_i x_i.\]

- From \(\frac{\partial J(w, b, \alpha)}{\partial b} = 0 \):
 \[\sum_{i=1}^N \alpha_i d_i = 0\]
Primal Problem: Constrained Optimization (cont’d)

- Note that when the optimal solution is reached, the following condition must hold (Kuhn-Tucker complementary condition)

\[\alpha_i \left[d_i (w^T x_i + b) - 1 \right] = 0 \]

for all \(i = 1, 2, \ldots, N \).

- Thus, non-zero \(\alpha_i \)'s can be attained only when \(\left[d_i (w^T x_i + b) - 1 \right] = 0 \), i.e., when the \(\alpha_i \) is associated with a support vector \(x^{(s)} \)!

- Other conditions include \(\alpha_i \geq 0 \).

Dual Problem

- Given the training sample \(\{(x_i, d_i)\}_{i=1}^{N} \), find the Lagrange multipliers \(\{\alpha_i\}_{i=1}^{N} \) that maximize the objective function:

\[Q(\alpha) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j x_i^T x_j + \sum_{i=1}^{N} \alpha_i \]

subject to the constraints

- \(\sum_{i=1}^{N} \alpha_i d_i = 0 \)

- \(\alpha_i \geq 0 \) for all \(i = 1, 2, \ldots, N \).

- The problem is stated entirely in terms of the training data \((x_i, d_i) \), and the dot products \(x_i^T x_j \) play a key role.

Solution to the Optimization Problem

Once all the optimal Lagrange multipliers \(\alpha_{o,i} \) are found, \(w_o \) and \(b_o \) can be found as follows:

\[w_o = \sum_{i=1}^{N} \alpha_{o,i} d_i x_i \]

and from \(w_o^T x_i + b_o = d_i \) when \(x_i \) is a support vector:

\[b_o = d^{(s)} - w_o^T x^{(s)} \]

Note: calculation of final estimated function does not need any explicit calculation of \(w_o \) since they can be calculated from the dot product between the input vectors!

\[w_o^T x = \sum_{i=1}^{N} \alpha_{o,i} d_i x_i^T x \]
Margin of Separation in SVM and VC Dimension

Statistical learning theory shows that it is desirable to reduce both the error (empirical risk) and the VC dimension of the classifier.

- Vapnik (1995, 1998) showed: Let D be the diameter of the smallest ball containing all input vectors x_i. The set of optimal hyperplanes defined by $w_o^T x + b_o = 0$ has a VC dimension h bounded from above as

 $$h \leq \min \left\{ \left\lceil \frac{D^2}{\rho^2} \right\rceil, m_0 \right\} + 1$$

 where $\lceil \cdot \rceil$ is the ceiling, ρ the margin of separation equal to $2/\|w_o\|$, and m_0 the dimensionality of the input space.

- The implication is that the VC dimension can be controlled independently of m_0, by choosing an appropriate (large) ρ!

Soft-Margin Classification

- Some problems can violate the condition:

 $$d_i(w^T x_i + b) \geq 1$$

- We can introduce a new set of variables $\{\xi_i\}_{i=1}^N$:

 $$d_i(w^T x_i + b) \geq 1 - \xi_i$$

 where ξ_i is called the slack variable.

Soft-Margin Classification: Solution

- Following a similar route involving Lagrange multipliers, and a more restrictive condition of $0 \leq \alpha_i \leq C$, we get the solution:

 $$w_o = \sum_{i=1}^{N_s} \alpha_{o,i} d_i x_i$$

 $$b_o = d_i (1 - \xi_i) - w_o^T x_i$$

 with a control parameter C.

Soft-Margin Classification (cont’d)

- We want to find a separating hyperplane that minimizes:

 $$\Phi(\xi) = \sum_{i=1}^{N} I(\xi_i - 1)$$

 where $I(\xi) = 0$ if $\xi \leq 0$ and 1 otherwise.

- Solving the above is NP-complete, so we instead solve an approximation:

 $$\Phi(\xi) = \sum_{i=1}^{N} \xi_i$$

- Furthermore, the weight vector can be factored in:

 $$\Phi(x, \xi) = \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i$$

 Controls VC dim Controls VC dim
Nonlinear SVM

- Nonlinear mapping of an input vector to a high-dimensional feature space (exploit Cover’s theorem)
- Construction of an optimal hyperplane for separating the features identified in the above step.

Inner-Product Kernel

- Input x is mapped to $\varphi(x)$.
- With the weight w (including the bias b), the decision surface in the feature space becomes (assume $\varphi_0(x) = 1$):
 \[w^T \varphi(x) = 0 \]
- Using the steps in linear SVM, we get
 \[w = \sum_{i=1}^{N} \alpha_i d_i \varphi(x_i) \]
- Combining the above two, we get the decision surface
 \[\sum_{i=1}^{N} \alpha_i d_i \varphi^T(x_i) \varphi(x) = 0. \]

Inner-Product Kernel (cont’d)

- Mercer’s theorem states that $K(x, x_i)$ that follow certain conditions (continuous, symmetric, positive semi-definite) can be expressed in terms of an inner-product in a non-linearly mapped feature space.
- Kernel function $K(x, x_i)$ allows us to calculate the inner product $\varphi^T(x) \varphi(x_i)$ in the mapped feature space without any explicit calculation of the mapping function $\varphi(\cdot)$.

Inner-Product Kernel (cont’d)

- The inner product $\varphi^T(x) \varphi(x_i)$ is between two vectors in the feature space.
- The calculation of this inner product can be simplified by use of a inner-product kernel $K(x, x_i)$:
 \[K(x, x_i) = \varphi^T(x) \varphi(x_i) = \sum_{j=0}^{m_1} \varphi_j(x) \varphi_j(x_i) \]
 where m_1 is the dimension of the feature space. (Note: $K(x, x_i) = K(x_i, x_i)$.)
- So, the optimal hyperplane becomes:
 \[\sum_{i=1}^{N} \alpha_i d_i K(x, x_i) = 0 \]
Examples of Kernel Functions

- **Linear:** $K(x, x_i) = x^T x_i$.
- **Polynomial:** $K(x, x_i) = (x^T x_i + 1)^p$.
- **RBF:** $K(x, x_i) = \exp\left(-\frac{1}{2\sigma^2} \|x - x_i\|^2\right)$.
- **Two-layer perceptron:** $K(x, x_i) = \tanh(\beta_0 x^T x_i + \beta_1)$ (for some β_0 and β_1).

Kernel Example

- Expanding $K(x, x_i) = (1 + x^T x_i)^2$ with $x = [x_1, x_2]^T, x_i = [x_{i1}, x_{i2}]^T$, $K(x, x_i) = 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_2^2 x_{i2}^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$

Nonlinear SVM: Solution

- The solution is basically the same as the linear case, where $x^T x_i$ is replaced with $K(x, x_i)$, and an additional constraint that $\alpha \leq C$ is added.

Nonlinear SVM Summary

Project input to high-dimensional space to turn the problem into a linearly separable problem.

Issues with a projection to higher dimensional feature space:

- **Statistical problem**: Danger of invoking curse of dimensionality and higher chance of overfitting
 - Use large margins to reduce VC dimension
- **Computational problem**: computational overhead for calculating the mapping $\varphi(\cdot)$:
 - Solve by using the kernel trick.