Motivation

How can we project the given data so that the variance in the projected points is maximized?

Principal Component Analysis: Variance Probe

- **X**: \(m \)-dimensional random vector (vector random variable following a certain probability distribution).
- Assume \(E[X] = 0 \).
- Projection of a unit vector \(q \) ((\(qq^T \))\(^{1/2} \) = 1) onto \(X \):
 \[A = X^T q = q^T X. \]
- We know \(E[A] = E[q^T X] = q^T E[X] = 0 \).
- The variance can also be calculated:
 \[\sigma^2 = E[A^2] = E[(q^T X)(X^T q)] = q^T E[XX^T] q \]
 = \(q^T \text{covariance matrix} q \)
 = \(q^T R q \).

Principal Component Analysis: Variance Probe (cont’d)

- This is sort of a variance probe: \(\psi(q) = q^T R q \).
- Using different unit vectors \(q \) for the projection of the input data points will result in smaller or larger variance in the projected points.
- With this, we can ask which vector direction does the variance probe \(\psi(q) \) has external value?
- The solution to the question is obtained by finding unit vectors satisfying the following condition:
 \[R q = \lambda q, \]
 where \(\lambda \) is a scaling factor. This is basically an eigenvalue problem.
PCA

- With an $m \times m$ covariance matrix R, we can get m eigenvectors and m eigenvalues:

$$Rq_j = \lambda_j q_j, j = 1, 2, ..., m$$

- We can sort the eigenvectors/eigenvalues according to the eigenvalues, so that

$$\lambda_1 > \lambda_2 > ... > \lambda_m.$$

and arrange the eigenvectors in a column-wise matrix

$$Q = [q_1, q_2, ..., q_m].$$

- Then we can write

$$RQ = Q\lambda$$

where $\lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_m)$.

- Q is orthogonal, so that $QQ^T = I$. That is, $Q^{-1} = Q^T$.

PCA: Summary

- The eigenvectors of the covariance matrix R of zero-mean random input vector X define the principal directions q_j along with the variance of the projected inputs have extremal values.

- The associated eigenvaluess define the extremal values of the variance probe.

PCA: Usage

- Project input x to the principal directions:

$$a = Q^T x.$$

- We can also recover the input from the projected point a:

$$x = (Q^T)^{-1}a = Qa.$$

- Note that we don’t need all m principal directions, depending on how much variance is captured in the first few eigenvalues: We can do dimensionality reduction.

PCA: Dimensionality Reduction

- Encoding: We can use the first l eigenvectors to encode x.

$$[a_1, a_2, ..., a_l]^T = [q_1, q_2, ..., q_l]^T x.$$

- Note that we only need to calculate l projections $a_1, a_2, ..., a_l$, where $l \leq m$.

- Decoding: Once $[a_1, a_2, ..., a_l]^T$ is obtained, we want to reconstruct the full $[x_1, x_2, ..., x_l, ..., x_m]^T$.

$$x = Qa \approx [q_1, q_2, ..., q_l][a_1, a_2, ..., a_l]^T = \hat{x}.$$

Or, alternatively

$$\hat{x} = Q[a_1, a_2, ..., a_l, 0, 0, ..., 0]^T.$$

with $m - l$ zeros.
PCA: Total Variance

- The total variance of the components of the data vector is
 \[\sum_{j=1}^{m} \sigma_j^2 = \sum_{j=1}^{m} \lambda_j. \]

- The truncated version with the first \(l \) components have variance
 \[\sum_{j=1}^{l} \sigma_j^2 = \sum_{j=1}^{l} \lambda_j. \]

- The larger the variance in the truncated version, i.e., the smaller
 the variance in the remaining components, the more accurate the
 dimensionality reduction.

PCA Example

```matlab
inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];
Q=[
    0.70285 -0.71134
    0.71134  0.70285
]
λ=[
    0.14425  0.00000
    0.00000  0.02161
]
```

PCA’s Relation to Neural Networks: Hebbian-Based Maximum Eigenfilter

- How does all the above relate to neural networks?

- A remarkable result by Oja (1982) shows that a single linear
 neuron with Hebbian synapse can evolve into a filter for the first
 principal component of the input distribution!

 - Activation:
 \[y = \sum_{i=1}^{m} w_i x_i \]

 - Learning rule:
 \[w_i(n + 1) = \frac{w_i(n) + \eta y(n)x_i(n)}{\left(\sum_{i=1}^{m} [w_i(n) + \eta y(n)x_i(n)]^2 \right)^{1/2}} \]

- Expanding the denominator as a power series, dropping the
 higher order terms, etc., we get

 \[w_i(n + 1) = w_i(n) + \eta y(n)[x_i(n) - y(n)w_i(n)] + O(\eta^2), \]

 with \(O(\eta^2) \) including the second- and higher-order effects of \(\eta \),
 which we can ignore for small \(\eta \).

- Based on that, we get

 \[w_i(n + 1) = w_i(n) + \eta y(n)[x_i(n) - y(n)w_i(n)] \]

 \[= w_i(n) + \eta \left(\frac{y(n)x_i(n)}{\sqrt{\sum_{i=1}^{m} [w_i(n) + \eta y(n)x_i(n)]^2}} - \frac{y(n)^2w_i(n)}{\sqrt{\sum_{i=1}^{m} [w_i(n) + \eta y(n)x_i(n)]^2}} \right) \]

 \[\text{Hebbian term} \quad \text{Stabilization term} \]
Matrix Formulation of the Algorithm

- Activation
 \(y(n) = x^T(n)w(n) = w^T(n)x(n) \)

- Learning
 \(w(n + 1) = w(n) + \eta(n)[x(n) - y(n)w(n)] \)

- Combining the above,
 \[w(n + 1) = w(n) + \eta(n)[x(n)x^T(n)w(n) - w^T(n)x(n)x^T(n)w(n)w(n)] \]
 represents a nonlinear stochastic difference equation, which is hard to analyze.

Conditions for Stability

1. \(\eta(n) \) is a decreasing sequence of positive real numbers such that
 \[\sum_{n=1}^{\infty} \eta(n) = \infty, \sum_{n=1}^{\infty} \eta^p(n) < \infty \text{ for } p > 1, \]
 \(\eta(n) \to 0 \text{ as } n \to \infty. \)

2. Sequence of parameter vectors \(w(\cdot) \) is bounded with probability 1.

3. The update function \(h(w, x) \) is continuously differentiable w.r.t. \(w \) and \(x \), and its derivatives are bounded in time.

4. The limit \(\bar{h}(w) = \lim_{n \to \infty} E[h(w, X)] \) exists for each \(w \), where \(X \) is a random vector.

5. There is a locally asymptotically stable solution to the ODE
 \[\frac{d}{dt}w(t) = \bar{h}(w(t)). \]

6. Let \(q_1 \) denote the solution to the ODE above with a basin of attraction \(B(q) \). The parameter vector \(w(n) \) enters the compact subset \(\mathcal{A} \) of \(B(q) \) infinitely often with prob. 1.

Asymptotic Stability Theorem

- To ease the analysis, we rewrite the learning rule as
 \(w(n + 1) = w(n) + \eta(n)h(w(n), x(n)) \).

- The goal is to associate a deterministic ordinary differential equation (ODE) with the stochastic equation.

- Under certain reasonable conditions on \(\eta, h(\cdot, \cdot), \) and \(w \), we get the asymptotic stability theorem stating that
 \[\lim_{n \to \infty} w(n) = q_1 \]
 infinitely often with probability 1.

Stability Analysis of Maximum Eigenfilter

Set it up to satisfy the conditions of the asymptotic stability theorem:

- Set the learning rate to be \(\eta(n) = 1/n. \)

- Set \(h(\cdot, \cdot) \) to
 \[h(w, x) = x(n)y(n) - y^2w(n) = x(n)x^T(n)w(n) - [w^T(n)x(n)x^T(n)w(n)]w(n) \]

- Taking expectaion over all \(x \),
 \[\bar{h} = \lim_{n \to \infty} E[x(n)x^T(n)w(n) - (w^T(n)x(n)x^T(n)w(n))w(n)] \]
 \[= Rw(\infty) - [w^T(\infty)Rw(\infty)]w(\infty) \]

- Substituting \(\bar{h} \) into the ODE,
 \[\frac{d}{dt}w(t) = \bar{h}(w(t)) = Rw(t) - [w^T(t)Rw(t)]w(t). \]
Stability Analysis of Maximum Eigenfilter

- Expanding $w(t)$ with the eigenvectors of R,

$$ w(t) = \sum_{k=1}^{m} \theta_k(t)q_k, $$

and using basic definitions

$$ Rq_k = \lambda_k q, \quad q_k^T Rq_k = \lambda_k $$

we get (see next slide for derivation)

$$ \sum_{k=1}^{m} \frac{d\theta_k(t)}{dt} q_k = \sum_{k=1}^{m} \lambda_k \theta_k(t)q_k - \left[\sum_{l=1}^{m} \lambda_l \theta_l^2(t) \right] \sum_{k=1}^{m} \theta_k(t)q_k. $$

Next, we show $Rw(t) = \sum_{k=1}^{m} \lambda_k \theta_k(t)q_k$, using $Rq_k = \lambda_k q$.

$$ Rw(t) = R \sum_{k=1}^{m} \theta_k(t)q_k $$

$$ = \sum_{k=1}^{m} \theta_k(t)Rq_k $$

$$ = \sum_{k=1}^{m} \lambda_k \theta_k(t)q_k $$

Stability Analysis of Maximum Eigenfilter (cont’d)

Equating the RHS's of the following

$$ \frac{dw(t)}{dt} = \frac{d}{dt} \left(\sum_{k=1}^{m} \theta_k(t)q_k \right), $$

we get

$$ \sum_{k=1}^{m} \frac{d\theta_k(t)}{dt} q_k = \sum_{k=1}^{m} \lambda_k \theta_k(t)q_k - \left[\sum_{l=1}^{m} \lambda_l \theta_l^2(t) \right] \sum_{k=1}^{m} \theta_k(t)q_k. $$

Stability Analysis of Maximum Eigenfilter (cont’d)

Next, we show

$$ [w^T(t)Rw(t)]w(t) = [\sum_{l=1}^{m} \lambda_l \theta_l^2(t)] \sum_{k=1}^{m} \theta_k(t)q_k. $$

$[w^T(t)Rw(t)]w(t) = [w^T(t)Rw(t)] \sum_{k=1}^{m} \theta_k(t)q_k$

$$ = \left[\sum_{l=1}^{m} \theta_l(t)q_l^T \right] \left[\sum_{k=1}^{m} \theta_k(t)q_k \right] $$

$$ = \sum_{l=1}^{m} \theta_l(t)q_l^T \left[\sum_{k=1}^{m} \theta_k(t)q_k \right] $$

$$ = \sum_{l=1}^{m} \theta_l(t)q_l^T R \left[\sum_{k=1}^{m} \theta_k(t)q_k \right] $$

$$ = \sum_{l=1}^{m} \theta_l(t)q_l^T \left[\sum_{k=1}^{m} \theta_k(t)q_k \right] $$

$$ = \sum_{l=1}^{m} \theta_l(t) \theta_k(t)q_l^T \lambda_k q_k $$

$$ = \sum_{l=1}^{m} \theta_l(t) \theta_k(t)q_l^T \lambda_k q_k $$

$$ = \sum_{l=1}^{m} \theta_l(t) \theta_k(t) \lambda_l \sum_{k=1}^{m} \theta_k(t)q_k $$

$$ = \sum_{l=1}^{m} \theta_l(t) \theta_k(t) \lambda_l \sum_{k=1}^{m} \theta_k(t)q_k $$

$$ = \sum_{l=1}^{m} \theta_l^2(t) \lambda_l \sum_{k=1}^{m} \theta_k(t)q_k $$

$$ = \sum_{l=1}^{m} \theta_l^2(t) \lambda_l \sum_{k=1}^{m} \theta_k(t)q_k $$

{ Inner sum disappears since $q_l^T q_k = 0$ for $l \neq k$ and $= 1$ for $l = k$ }
Stability Analysis of Maximum Eigenfilter (cont’d)

• Factoring out q_k, we get

$$\frac{d\theta_k(t)}{dt} = \lambda_k \theta_k(t) - \left[\sum_{l=1}^{m} \lambda_l \theta_l^2(t) \right] \theta_k(t).$$

• We can analyze the above in two cases (details in following slides):

 - Case I: $k \neq 1$
 In this case, $\alpha_k(t) = \frac{\theta_k(t)}{\theta_1(t)} \to 0$ as $t \to \infty$, by using
 \[
 \frac{d\theta_k(t)}{dt} \quad \text{above to derive} \quad \frac{d\alpha_k(t)}{dt} = - (\lambda_1 - \lambda_k) \alpha_k(t). \\
 \]
 positive!

 - Case II: $k = 1$
 In this case, $\theta_1(t) \to \pm 1$ as $t \to \infty$, from
 \[
 \frac{d\theta_1(t)}{dt} = \lambda_1 \theta_1(t) \left[1 - \theta_1^2(t) \right]. \\
 \]

Stability Analysis of Maximum Eigenfilter (cont’d)

Case I (in detail): $k \neq 1$

• Given

$$\frac{d\theta_k(t)}{dt} = \lambda_k \theta_k(t) - \left[\sum_{l=1}^{m} \lambda_l \theta_l^2(t) \right] \theta_k(t). \quad (1)$$

• Define $\alpha_k(t) = \frac{\theta_k(t)}{\theta_1(t)}$.

• Derive

$$\frac{d\alpha_k(t)}{dt} = \frac{1}{\theta_1(t)} \frac{d\theta_1(t)}{dt} - \frac{\theta_k(t)}{\theta_1^2(t)} \frac{d\theta_1(t)}{dt} \quad (2)$$

• Plug in (1) above into (2). (Both $d\theta_k(t)/dt$ and $d\theta_1(t)/dt$.)

• Finally, we get: $\frac{d\alpha_k(t)}{dt} = - (\lambda_1 - \lambda_k) \alpha_k(t)$, so $\alpha_k(t) \to 0$ as $t \to \infty$.

22

Stability Analysis of Maximum Eigenfilter (cont’d)

Case II: $k = 1$

\[
\frac{d\theta_1(t)}{dt} = \lambda_1 \theta_1(t) \left[1 - \theta_1^2(t) \right]. \\
\]

Using results from Case I ($\alpha_l \to 0$ for $l \neq 1$ and $t \to \infty$), $\theta_1(t) \to \pm 1$ as $t \to \infty$, from

$$\frac{d\theta_1(t)}{dt} = \lambda_1 \theta_1(t) \left[1 - \theta_1^2(t) \right].$$

23

Stability Analysis of Maximum Eigenfilter (cont’d)

Recalling the original expansion

$$w(t) = \sum_{k=1}^{m} \theta_k(t) q_k,$$

we can conclude that

$$w(t) \to q_1, \quad \text{as} \quad t \to \infty.$$

where q_1 is the normalized eigenvector associated with the largest eigenvalue λ_1 of the covariance matrix R.

• Other conditions of stability can also be shown to hold (see the textbook).
Summary of Hebbian-Based Maximum Eigenfilter

Hebbian-based linear neuron converges with probability 1 to a fixed point, which is characterized as follows:

- Variance of output approaches the largest eigenvalue of the covariance matrix \(\mathbf{R} \) \((y(n)\) is the output):
 \[
 \lim_{n \to \infty} \sigma^2(n) = \lim_{n \to \infty} E[Y^2(n)] = \lambda_1
 \]

- Synaptic weight vector approaches the associated eigenvector
 \[
 \lim_{n \to \infty} \mathbf{w}(n) = \mathbf{q}_1
 \]
 with
 \[
 \lim_{n \to \infty} \|\mathbf{w}(n)\| = 1.
 \]

Generalized Hebbian Algorithm for full PCA

- Sanger (1989) showed how to construct a feedforward network to learn all the eigenvectors of \(\mathbf{R} \).

- Activation
 \[
 y_j(n) = \sum_{i=1}^{m} w_{ji}(n)x_i(n), j = 1, 2, \ldots, l
 \]

- Learning
 \[
 \Delta w_{ji}(n) = \eta \left[y_j(n)x_i(n) - y_j(n) \sum_{k=1}^{j} w_{ki}(n)y_k(n) \right],
 \]
 \[
 i = 1, 2, \ldots, m, \quad j = 1, 2, \ldots, l.
 \]