633-600 Machine Learning

- Instructor: Yoonsuck Choe
 - Contact info: HRBB 322B, 845-5466, choe@tamu.edu
- TA: see web page
- Course web page: http://courses.cs.tamu.edu/choe/17spring/633

Textbook

- Book webpage: http://www.cmpe.boun.edu.tr/~ethem/i2ml3e/
- Book webpage: http://www.cs.cmu.edu/~tom/mlbook.html
- Text and figures, etc. will be quoted from the textbook without repeated acknowledgment. Instructor’s perspective will be indicated by “YC” where appropriate.

Course Info

- Grading, academic policy, students with disabilities, lecture notes, computer accounts, programming languages.
- See course web page.

Relation to Other Courses

Some overlaps:

- Neural Networks: perceptrons, backpropagation, radial basis function networks etc.
- Pattern analysis: Bayesian learning, instance-based learning
- Artificial intelligence: decision trees (in some courses), neural networks (in some courses).
- Statistics: hypothesis testing
- (Relatively) unique to this course: computational learning theory, genetic algorithms, reinforcement learning, decision trees (in depth treatment), local learning (some aspects), dimensionality reduction, deep learning (also in neural networks)
ML Overview (I)

• How can machines (computers) learn?
 How can machines improve automatically with experience?

• How can machines learn from data?

• Benefits:
 – Improved performance
 – Automated optimization
 – New uses of computers
 – Reduced programming (YC)
 – Insights into human learning and learning disabilities

ML Overview (II)

• Current status: Yet unsolved problem.
 – Theoretical insights emerging.
 – Practical applications.
 – Huge data volume demands ML, and provides opportunity to ML (datamining).

• State of the art:
 – speech recognition
 – medical predictions
 – fraud detection
 – drive autonomous vehicles (highway and desert)
 – board games (Backgammon, Chess, and Go!)
 – theoretical bounds on error, number of inputs needed, etc.

ML Overview (III)

Multidisciplinary roots:

• AI
• probability and statistics
• computational complexity theory
• control theory
• information theory
• philosophy
• psychology
• neurobiology

Well-Posed Learning Problem

A program is said to learn from

• experience E with respect to
• task T and
• performance measure P,

• P in T increase with E.

Examples: Playing checkers, Handwriting recognition, Robot driving, etc.

Goal of ML: “define precisely a class of problems that encompasses interesting forms of learning [but not all: YC], to explore algorithms that solve such problems, and to understand the fundamental structure of learning problems and processes” (Mitchell, 1997)
Designing a Learning System (I)

Training experience:

- direct vs. indirect (problem of credit assignment)
- degree of control over training examples (teacher-dependent or learner-generated)
- closeness of training example distribution to true distribution over which P is measured: in many cases, ML algorithms assume that both distributions are similar, which may not be the case in practice.

Designing a Learning System (II)

Remaining design choices:

- Exact type of knowledge to be learned.
- A representation for this target knowledge.
- A learning mechanism.
- functional/operational principle giving rise to the learning mechanism (YC)

Design: Target Function (I)

Type of knowledge to be learned: for example, we want to learn best move in a board game.

- Can represent as a function (B: board states, M: moves):
 \[\text{ChooseMove} : B \rightarrow M, \]
 but it is hard to learn directly.

Design: Target Function (II)

- Another function (B: board states, R: real numbers):
 \[V : B \rightarrow R, \]
 which gives the evaluation of each board state.
 - $V(b = \text{win}) = 100$
 - $V(b = \text{lose}) = -100$
 - $V(b = \text{draw}) = 0$
 - $V(b = \text{otherwise}) = V(b')$, where b' is the best final board state that can be reached from b.
 - However, this is not efficiently computable, i.e., it is a nonoperational definition.
 - Goal of ML is to find an operational description of V, however, in practice, an approximation is all we can get.
Design: Representation for Target Function

Given an ideal target function V, we want to learn an approximate function \hat{V}:

- Trade-off between rich and parsimonious representation.
- Example: \hat{V} as a linear combination of number of pieces, number of particular relational situations in the board (e.g., threatened), etc. (represented as x_i) in board configuration b:

$$\hat{V}(b) = w_0 + \sum_{i=1}^{n} w_i x_i,$$

where w_i are the weight values to be learned.

- Advantage of the above representation: reduction of scope (or dimensionality) from the original problem.

Design: Function Approximation Algorithm

Given board state and true V, we want to learn the weights w_i that specify \hat{V}:

- Start with a set of a large number of input-target pairs $<b,V_{\text{train}}(b)>$.
- Problem: cannot come up with a full set of $<b,V_{\text{train}}(b)>$ pairs.
- Solution: If $V_{\text{train}}(b)$ is unknown, set it to the estimated \hat{V} of its successor board state:

$$V_{\text{train}}(b) = \hat{V}_{\text{train}}(\text{Successor}(b)).$$

Design: Adjusting Weights (I)

Last component in defining a learning algorithm: adjustment of weights.

- Want to learn weights w_i that best fit the set of training samples $<b,V_{\text{train}}(b)>$.
- How to define best fit? Once we have \hat{V}, we can calculate all $\hat{V}(b)$ for all b in the training set, and calculate the error.

$$E \equiv \sum_{<b,V_{\text{train}}(b)> \in \text{training set}} (V_{\text{train}}(b) - \hat{V}(b))^2$$

- How to reduce E?

Design: Adjusting Weights (II)

Least Mean Squares (LMS) learning rule: For each training example $<b,V_{\text{train}}(b)>$:

- Use the current weights to calculate $\hat{V}(b)$.
- For each weight w_i, update it as

$$w_i \leftarrow w_i + \eta (V_{\text{train}}(b) - \hat{V}(b)) x_i,$$

where η is a small learning rate constant.

- The error $V_{\text{train}}(b) - \hat{V}(b)$ and the input x_i both contribute to the weight update.
Final Design

Putting together the system (checker player):

- Performance system: input = problem, output = solution trace = game history (using what is learned so far)
- Critic: input = solution trace, output = training examples (estimated $V_{\text{train}}(b)$)
- Generalizer: input = training examples, output = estimated hypothesis \hat{V} (i.e., learned weights w_i)
- Experiment generator: input = hypothesis \hat{V}, output = new problem (new initial condition, to explore particualar regions)

Alternatives (I)

- Training experience: against experts, against self, table of correct moves, ...
- Target function: board \rightarrow move, board \rightarrow value, ...
- Representation of target function: polynomial, linear function of small number of features, artificial neural network
- Learning algorithm: gradient descent, linear programming, ...

Alternatives (II)

- Memorize (instance-based learning)
- Spawn a population and make them compete with each other (genetic algorithms)
- Analyze and reason about things

Perspectives on ML: Hypothesis Space Search

- Useful to think of ML as searching a very large space of possible hypotheses to best fit the data and the learner’s prior knowledge.
- For example, the hypothesis space for \hat{V} would be all possible \hat{V}’s with different weight assignment.
- Useful concepts regarding hypothesis space search:
 - Size of hypothesis space
 - Number of training examples available/needed.
 - Confidence in generalizing to new unseen data.
Issues in ML

- What algorithms exist for generalizable learners given specific training set? Requirements for convergence? Which algorithms are best for a particular domain?
- How much training data needed? Bounds on confidence, based on data size? How long to train?
- Use of prior knowledge?
- How to choose best training experience? Impact of the choice?
- How to reduce ML problem to function approximation?
- How can learner alter the representation itself?

Classification of learning algorithms (YC)

What to do with given data? What kinds of data are given?
- Supervised learning: input-target pairs given.
- Unsupervised learning: only input distribution is given.
- Reinforcement learning: sparse reward signal is given for action based on sensory input; environment-altering actions.

Broader questions (YC)

- Can machines themselves formulate their own learning tasks?
 - Can they come up with their own representations?
 - Can they come up with their own learning strategy?
 - Can they come up with their own motivation?
 - Can they come up with their own questions/problems?
- What if the machines are faced with multiple, possibly conflicting tasks? Can there be a meta learning algorithm?
- What if performance is hard to measure (i.e., hard to quantify, or even worse, subjective)?
- Lesson: think outside the box; question the questions themselves.