Neural Networks

• Threshold units
• Gradient descent
• Multilayer networks
• Backpropagation
• Hidden layer representations
• Example: Face Recognition
• Advanced topics
• And, more.

Understanding the Brain

• Levels of analysis (Marr, 1982)
 1. Computational theory
 2. Representation and algorithm
 3. Hardware implementation

• Reverse engineering: From hardware to theory
• Parallel processing: SIMD vs MIMD

Neural net: SIMD with modifiable local memory
Learning: Update by training/experience

Biological Neurons and Networks

• Neuron switching time ~ 0.001 second (1 ms)
• Number of neurons $\sim 10^{10}$
• Connections per neuron $\sim 10^{4-5}$
• Scene recognition time ~ 0.1 second (100 ms)

100 processing steps doesn’t seem like enough \rightarrow much parallel computation
Artificial Neural Networks

- Many neuron-like threshold switching units (real-valued)
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically: New learning algorithms, new optimization techniques, new learning principles.

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Long training time (may need occasional, extensive retraining)
- Form of target function is unknown
- Fast evaluation of learned target function
- Human readability of result is unimportant

Biologically Motivated (or Accurate) Neural Networks

- Spiking neurons
- Complex morphological models
- Detailed dynamical models
- Connectivity either based on or trained to mimic biology
- Focus on modeling network/neural/subneural processes
- Focus on natural principles of neural computation
- Different forms of learning: spike-timing-dependent plasticity, covariance learning, short-term and long-term plasticity, etc.

Example Applications (more later)

Examples:

- Speech synthesis
- Handwritten character recognition (from yann.lecun.com).
- Financial prediction, Transaction fraud detection (Big issue lately)
- Driving a car on the highway
Perceptrons

\[o(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases} \]

Sometimes we'll use simpler vector notation:

\[o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases} \]

Boolean Logic Gates with Perceptron Units

- Perceptrons can represent basic boolean functions.
- Thus, a network of perceptron units can compute any Boolean function.

What about XOR or EQUIV?

Hypothesis Space of Perceptrons

- The tunable parameters are the weights \(w_0, w_1, \ldots, w_n\), so the space \(H\) of candidate hypotheses is the set of all possible combination of real-valued weight vectors:

\[
H = \{ \vec{w} | \vec{w} \in \mathbb{R}^{(n+1)} \}
\]

What Perceptrons Can Represent

Perceptrons can only represent **linearly separable** functions.

- Output of the perceptron:

\[
\begin{align*}
W_0 \times I_0 + W_1 \times I_1 - t &> 0, & \text{then output is 1} \\
W_0 \times I_0 + W_1 \times I_1 - t &\leq 0, & \text{then output is } -1
\end{align*}
\]

The hypothesis space is a collection of separating lines.
Geometric Interpretation

- Rearranging
 \[W_0 \times I_0 + W_1 \times I_1 - t > 0, \]
 then output is 1,

we get (if \(W_1 > 0 \))

\[I_1 > \frac{-W_0}{W_1} \times I_0 + \frac{t}{W_1}, \]

where points above the line, the output is 1, and -1 for those below the line.

- The geometric interpretation is generalizable to functions of \(n \) arguments, i.e. perceptron with \(n \) inputs plus one threshold (or bias) unit.

- Without the bias \((t = 0) \), learning is limited to adjustment of the slope of the separating line passing through the origin.

- Three example lines with different weights are shown.

Limitation of Perceptrons

- Only functions where the -1 points and 1 points are clearly separable can be represented by perceptrons.

Generalizing to \(n \)-Dimensions

- Equation of a plane: \(\vec{n} \cdot (\vec{x} - \vec{x}_0) = 0 \)

- For \(n \)-D input space, the decision boundary becomes a \((n - 1)\)-D hyperplane (1-D less than the input space).

\[\vec{n} = (a, b, c), \quad \vec{x} = (x, y, z), \quad \vec{x}_0 = (x_0, y_0, z_0). \]
Linear Separability

- For functions that take integer or real values as arguments and output either -1 or 1.
- Left: linearly separable (i.e., can draw a straight line between the classes).
- Right: not linearly separable (i.e., perceptrons cannot represent such a function)

For XOR:

<table>
<thead>
<tr>
<th>#</th>
<th>I_0</th>
<th>I_1</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

$W_0 \times I_0 + W_1 \times I_1 - t > 0$, then output is 1:

1. $-t \leq 0 \rightarrow t \geq 0$
2. $W_1 - t > 0 \rightarrow W_1 > t$
3. $W_0 - t > 0 \rightarrow W_0 > t$
4. $W_0 + W_1 - t \leq 0 \rightarrow W_0 + W_1 \leq t$

$2t < W_0 + W_1 < t$ (from 2, 3, and 4), but $t \geq 0$ (from 1), a contradiction.

Learning: Perceptron Rule

- The weights do not have to be calculated manually.
- We can train the network with (input,output) pair according to the following weight update rule:

$$w_i \leftarrow w_i + \eta(t - o)x_i$$

where η is the learning rate parameter.
- Proven to converge if input set is linearly separable and η is small.
Learning in Perceptrons (Cont’d)

\[w_i \leftarrow w_i + \eta (t - o)x_i \]

- When \(t = o \), weight stays.
- When \(t = 1 \) and \(o = -1 \), change in weight is:
 \[\eta (1 - (-1))x_i > 0 \]
 if \(x_i \) are all positive. Thus \(\vec{w} \cdot \vec{x} \) will increase, thus eventually, output \(o \) will turn to 1.
- When \(t = -1 \) and \(o = 1 \), change in weight is:
 \[\eta (-1 - 1)x_i < 0 \]
 if \(x_i \) are all positive. Thus \(\vec{w} \cdot \vec{x} \) will decrease, thus eventually, output \(o \) will turn to -1.

Another Learning Rule: Delta Rule

- The perceptron rule cannot deal with noisy data.
- The delta rule will find an approximate solution even when input set is not linearly separable.
- Use linear unit without the step function: \(o(\vec{x}) = \vec{w} \cdot \vec{x} \).
- Want to reduce the error by adjusting \(\vec{w} \):
 \[E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]

Learning in Perceptron: Another Look

- The perceptron on the left can be represented as a line shown on the right (why? see page 14).
- Learning can be thought of as adjustment of \(\vec{w} \) turning toward the input vector \(\vec{x} \): \(\vec{w} \leftarrow \vec{w} + \eta (t - o)\vec{x} \).
- Adjustment of the bias \(t \) moves the line closer or away from the origin.

Gradient Descent

- Want to minimize by adjusting \(\vec{w} \): \(E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \)
- Note: the error surface is defined by the training data \(D \). A different data set will give a different surface.
- \(E(w_0, w_1) \) is the error function above, and we want to change \((w_0, w_1) \) to position under a low \(E \).
Gradient Descent (Cont’d)

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent (Cont’d)

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x}_d)$$

$$\frac{\partial E}{\partial w_i} = \sum_d (t_d - o_d)(-x_{i,d})$$

Since we want $$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$, $$\Delta w_i = \eta \sum_d (t_d - o_d)x_{i,d}$$.

Gradient Descent (Example)

- Gradient points in the **maximum increasing direction**.
- Gradient is perpendicular to the level curve (uphill direction).
- $$E(w_0, w_1)$$ is the error function above, so $$\nabla E = (\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1})$$, a vector on a 2D plane.

Gradient Descent: Summary

Gradient-Descent (training examples, \(\eta\))

Each training example is a pair of the form $$\langle \vec{x}, t \rangle$$, where $$\vec{x}$$ is the vector of input values, and $$t$$ is the target output value. \(\eta\) is the learning rate (e.g., .05).

- Initialize each $$w_i$$ to some small random value.
- Until the termination condition is met, Do
 - For each $$\langle \vec{x}, t \rangle$$ in training examples, Do
 - Input the instance $$\vec{x}$$ to the unit and compute the output $$o$$
 - For each linear unit weight $$w_i$$, Do
 $$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$$
 - For each linear unit weight $$w_i$$, Do
 $$w_i \leftarrow w_i + \Delta w_i$$
Gradient Descent Properties

Gradient descent is effective in searching through a large or infinite H:

- H contains continuously parameterized hypotheses, and
- the error can be **differentiated** wrt the parameters.

Limitations:

- convergence can be slow, and
- finds local minima (global minimum not guaranteed).

Standard and Stochastic Grad. Desc.: Differences

- In the standard version, error is defined over entire D.
- In the standard version, more computation is needed per weight update, but η can be larger.
- Stochastic version can **sometimes** avoid local minima.

Stochastic Approximation to Grad. Desc.

Avoiding local minima: Incremental gradient descent, or stochastic gradient descent.

- Instead of weight update based on all input in D, immediately update weights after each input example:
 \[
 \Delta w_i = \eta(t - o)x_i,
 \]
 instead of
 \[
 \Delta w_i = \eta \sum_{d \in D} (t_d - o_d)x_i,
 \]
- Can be seen as minimizing error function
 \[
 E_d(\vec{w}) = \frac{1}{2} (t_d - o_d)^2.
 \]

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule using gradient descent

- Asymptotic convergence to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H
Exercise: Implementing the Perceptron

• It is fairly easy to implement a perceptron.
• You can implement it in any programming language: C/C++, etc.
• Look for examples on the web, and JAVA applet demos.

Multilayer Networks

• Nonlinear decision surfaces.

• Another example: XOR

Multilayer Networks and Backpropagation

Multilayer Networks and Backpropagation

• Nonlinear decision surfaces.

• Another example: XOR

Error Gradient for a Sigmoid Unit

\[
\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i}(t_d - o_d) \\
= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\
= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial \text{net}_d} \frac{\partial \text{net}_d}{\partial w_i}
\]
Error Gradient for a Sigmoid Unit

From the previous page:

$$\frac{\partial E}{\partial w_i} = -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial \text{net}_d} \frac{\partial \text{net}_d}{\partial w_i}$$

But we know:

$$\frac{\partial o_d}{\partial \text{net}_d} = \frac{\partial \sigma(\text{net}_d)}{\partial \text{net}_d} = o_d(1 - o_d)$$

$$\frac{\partial \text{net}_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d(1 - o_d)x_{i,d}$$

The δ Term

- For output unit:
 $$\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k) \frac{\sigma'(\text{net}_k)}{\text{Error}}$$
 - In sum, δ is the derivative times the error.
 - Derivation to be presented later.

- For hidden unit:
 $$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{kh} \delta_k \frac{\sigma'(\text{net}_h)}{\text{Backpropagated error}}$$

Derivation of ∆w

- Want to update weight as:
 $$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}},$$
 where error is defined as:
 $$E_d(\vec{w}) \equiv \frac{1}{2} \sum_{k \in \text{outputs}} (t_k - o_k)^2$$

- Given $$\text{net}_j = \sum_{i} w_{ji}x_i$$,
 $$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}}$$
 - Different formula for output and hidden.

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do
 1. Input the training example to the network and compute the network outputs
 2. For each output unit $$k$$
 $$\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k)$$
 3. For each hidden unit $$h$$
 $$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{kh} \delta_k$$
 4. Update each network weight $$w_{i,j}$$
 $$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$ where
 $$\Delta w_{ji} = \eta \delta_j x_i.$$
Derivation of Δw: Output Unit Weights

From the previous page,
\[
\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}}
\]

First, calculate $\frac{\partial E_d}{\partial \text{net}_j}$:

\[
\frac{\partial E_d}{\partial \text{net}_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in \text{outputs}} (t_k - o_k)^2
\]

\[
= \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2
\]

\[
= 2 \frac{1}{2} (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}
\]

\[
= -(t_j - o_j)
\]

$\delta_j = \text{error} \times \sigma'(\text{net})$

σ' is the derivative of the sigmoid function.

Since the error for each output unit is calculated as $\delta_j = \text{error} \times \sigma'(\text{net})$:

\[
\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = -(t_j - o_j) o_j (1 - o_j) x_i
\]

Derivation of Δw: Hidden Unit Weights

From the previous page,
\[
\frac{\partial E_d}{\partial \text{net}_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j} = -(t_j - o_j) o_j (1 - o_j) .
\]

Putting everything together,
\[
\frac{\partial E_d}{\partial \text{net}_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j} = -(t_j - o_j) o_j (1 - o_j) .
\]

Next, calculate $\frac{\partial o_j}{\partial \text{net}_j}$: Since $o_j = \sigma(\text{net}_j)$, and
\[
\sigma'(\text{net}_j) = o_j(1 - o_j),
\]

\[
\frac{\partial o_j}{\partial \text{net}_j} = o_j(1 - o_j).
\]

Derivation of Δw: Hidden Unit Weights

Start with
\[
\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} x_i
\]

\[
= \sum_{k \in \text{Downstream}(j)} \left(-\delta_k \frac{\partial \text{net}_k}{\partial \text{net}_j} \right) \frac{\partial \text{net}_k}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j}
\]

\[
= \sum_{k \in \text{Downstream}(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial \text{net}_j}
\]

\[
= \sum_{k \in \text{Downstream}(j)} -\delta_k w_{kj} o_j (1 - o_j) \sigma'(\text{net})
\]

(1)
Derivation of Δw: Hidden Unit Weights

Finally, given

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial \text{net}_j} x_i,$$

and

$$\frac{\partial E_d}{\partial \text{net}_j} = \sum_{k \in \text{Downstream}(j)} -\delta_k w_{kj} o_j (1 - o_j),$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} = \eta [o_j(1 - o_j) \sum_{k \in \text{Downstream}(j)} \delta_k w_{kj} x_i],$$

Extension to Different Network Topologies

- **Arbitrary number of layers**: for neurons in layer m:
 $$\delta_r = o_r (1 - o_r) \sum_{s \in \text{layer} m+1} w_{sr} \delta_s.$$

- **Arbitrary acyclic graph**:
 $$\delta_r = o_r (1 - o_r) \sum_{s \in \text{Downstream}(r)} w_{sr} \delta_s.$$

Representational Power of Feedforward Networks

- **Boolean functions**: every boolean function representable with two layers (hidden unit size can grow exponentially in the worst case: one hidden unit per input example, and “OR” them).

- **Continuous functions**: Every bounded continuous function can be approximated with an arbitrarily small error (output units are linear).

- **Arbitrary functions**: with three layers (output units are linear).
H-space Search and Inductive Bias

- \(H\)-space = \(n\)-D weight space (when there are \(n\) weights).
- The space is continuous, unlike decision tree or general-to-specific concept learning algorithms.
- Inductive bias:
 - Smooth interpolation between data points.

Learned Hidden Layer Representations

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>0.89</td>
<td>0.04</td>
</tr>
<tr>
<td>01000000</td>
<td>0.01</td>
<td>0.11</td>
</tr>
<tr>
<td>00100000</td>
<td>0.01</td>
<td>0.97</td>
</tr>
<tr>
<td>00010000</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>00001000</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>00000100</td>
<td>0.22</td>
<td>0.99</td>
</tr>
<tr>
<td>00000010</td>
<td>0.80</td>
<td>0.01</td>
</tr>
<tr>
<td>00000001</td>
<td>0.60</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Learning Hidden Layer Representations

- Learned encoding is similar to standard 3-bit binary code.
- Automatic discovery of useful hidden layer representations is a key feature of ANN.
- Note: The hidden layer representation is compressed.
Overfitting

- Error in two different robot perception tasks.
- Training set and validation set error.
- Early stopping ensures good performance on unobserved samples, but must be careful.
- Weight decay, use of validation sets, use of k-fold cross-validation, etc. to overcome the problem.

Recurrent Networks

- Sequence recognition.
- Store tree structure (next slide).
- Can be trained with plain backpropagation.
- Generalization may not be perfect.

Alternative Error Functions

Penalize large weights:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji}^2$$

Train on target slopes as well as values (when the slope is available):

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} \left((t_{kd} - o_{kd})^2 + \mu \sum_{j \in \text{inputs}} \left(\frac{\partial t_{kd}}{\partial x_j^d} - \frac{\partial o_{kd}}{\partial x_j^d}\right)^2\right)$$

Tie together weights:

- e.g., in phoneme recognition network, or
- handwritten character recognition (weight sharing).
Learning Time

- **Applications:**
 - Sequence recognition: Speech recognition
 - Sequence reproduction: Time-series prediction
 - Sequence association

- **Network architectures**
 - Time-delay networks (Waibel et al., 1989)
 - Recurrent networks (Rumelhart et al., 1986)

Time-Delay Neural Networks

![Diagram of Time-Delay Neural Networks]

Unfolding in Time

![Diagram of Unfolding in Time]
Some Applications: NETtalk

- Learn to pronounce English text.
- Demo
- Data available in UCI ML repository

Backpropagation Exercise

- **URL:** http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz
- Untar and read the README file:
  ```bash
gzip -dc backprop-1.6.tar.gz | tar xvf -
```
- Run `make` to build (on departmental unix machines).
- Run `./bp conf/xor.conf` etc.

Backpropagation: Example Results

- Epoch: one full cycle of training through all training input patterns.
- **OR** was easiest, **AND** the next, and **XOR** was the most difficult to learn.
- Network had 2 input, 2 hidden and 1 output unit. Learning rate was 0.001.
Backpropagation: Example Results (cont’d)

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

Backpropagation: Things to Try

- How does increasing the number of hidden layer units affect the (1) time and the (2) number of epochs of training?
- How does increasing or decreasing the learning rate affect the rate of convergence?
- How does changing the slope of the sigmoid affect the rate of convergence?
- Different problem domains: handwriting recognition, etc.

Structured MLP

(Le Cun et al, 1989)

Weight Sharing
Tuning the Network Size

- Destructive
- Weight decay:
- Constructive
- Growing networks

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} - \lambda w_i \]

\[E' = E + \frac{\lambda}{2} \sum_i w_i^2 \]

(Ash, 1989) (Fahlman and Lebiere, 1989)

Bayesian Learning

- Consider weights \(w \) as random vars, prior \(p(w) \)

\[p(w | X) = \frac{p(X | w)p(w)}{p(X)} \quad \hat{w}_{MAP} = \arg \max_w \log p(w | X) \]

\[\log p(w | X) = \log p(X | w) + \log p(w) + C \]

\[p(w) = \prod_i p(w_i) \quad \text{where} \quad p(w_i) = c \cdot \exp\left[-\frac{w_i^2}{2(1/2\lambda)}\right] \]

\[E' = E + \lambda \|w\|^2 \]

- Weight decay, ridge regression, regularization
cost=data-misfit + \lambda complexity

More about Bayesian methods in chapter 14

Summary

- ANN learning provides general method for learning real-valued functions over continuous or discrete-valued attributed.
- ANNs are robust to noise.
- \(H \) is the space of all functions parameterized by the weights.
- \(H \) space search is through gradient descent: convergence to local minima.
- Backpropagation gives novel hidden layer representations.
- Overfitting is an issue.
- More advanced algorithms exist.