Dimensionality Reduction

- Olive slides: Alpaydin
- Black slides: extra content.

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Fewer parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

- **Feature selection**: Choosing $k < d$ important features, ignoring the remaining $d - k$
 - Subset selection algorithms
- **Feature extraction**: Project the original $x_i, i = 1, \ldots, d$ dimensions to new $k < d$ dimensions, $z_j, j = 1, \ldots, k$

Subset Selection

- There are 2^d subsets of d features
- **Forward search**: Add the best feature at each step
 - Set of features F initially \emptyset.
 - At each iteration, find the best new feature $j = \arg\min_i E(F \cup x_i)$
 - Add x_j to F if $E(F \cup x_j) < E(F)$
- **Hill-climbing $O(d^2)$ algorithm**
- **Backward search**: Start with all features and remove one at a time, if possible.
- **Floating search** (Add k, remove l)
Principal Components Analysis (PCA)

Note: \(Q\) means eigenvector matrix of the covariance matrix, in Haykin slides.

Motivation

- How can we project the given data so that the variance in the projected points is maximized?

Eigenvalues/Eigenvectors

- For a square matrix \(A\), if a vector \(x\) and a scalar value \(\lambda\) exists so that
 \[(A - \lambda I)x = 0\]
 then \(x\) is called an eigenvector of \(A\) and \(\lambda\) an eigenvalue.
- Note, the above is simply
 \[Ax = \lambda x\]
- An intuitive meaning is: \(x\) is the direction in which applying the linear transformation \(A\) only changes the magnitude of \(x\) (by \(\lambda\)) but not the angle.
- There can be as many as \(n\) eigenvector/eigenvalue for an \(n \times n\) matrix.

Eigenvalue/Eigenvector Example

- Red: original data \(x\)
- Green: projected data using \(A = \begin{bmatrix} 3 & 5 \\ 2 & 1 \end{bmatrix}\).
- Blue: Eigenvectors \(v_1=(0.91, 0.42), v_2=(-0.76,0.65)\), \(\lambda_1 = 5.3, \lambda_2 = -1.3\). Octave/Matlab code: \([V,Lambda]=eig(A)\)
- Magenta: \(A\) times eigenvectors.
Principal Components Analysis

- Find a low-dimensional space such that when \(x \) is projected there, information loss is minimized.
- The projection of \(x \) on the direction of \(w \) is: \(z = w^T x \)
- Find \(w \) such that \(\text{Var}(z) \) is maximized

\[
\text{Var}(z) = \text{Var}(w^T x) = E[(w^T x - w^T \mu)^2] = E[(w^T x - w^T \mu)(w^T x - w^T \mu)] = E[w^T (x - \mu)(x - \mu)^T w] = w^T E[(x - \mu)(x - \mu)^T] w = w^T \Sigma w
\]

where \(\text{Var}(x) = E[(x - \mu)(x - \mu)^T] = \Sigma \)

What PCA does

\[z = W^T(x - m) \]

where the columns of \(W \) are the eigenvectors of \(\Sigma \) and \(m \) is sample mean

Centers the data at the origin and rotates the axes
How to choose k?

- Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \cdots + \lambda_k}{\lambda_1 + \lambda_2 + \cdots + \lambda_k + \cdots + \lambda_d}$$

when λ_i are sorted in descending order

- Typically, stop at PoV > 0.9

- Scree graph plots of PoV vs k, stop at “elbow”

PCA: Usage

- Project input x to the principal directions:
 $$a = Q^T x.$$

- We can also recover the input from the projected point a:
 $$x = (Q^T)^{-1} a = Qa.$$

- Note that we don’t need all m principal directions, depending on how much variance is captured in the first few eigenvalues: We can do dimensionality reduction.
PCA: Dimensionality Reduction

- **Encoding**: We can use the first \(l \) eigenvectors to encode \(\mathbf{x} \).
 \[
 [a_1, a_2, ..., a_l]^T = [q_1, q_2, ..., q_l]^T \mathbf{x}.
 \]

- Note that we only need to calculate \(l \) projections \(a_1, a_2, ..., a_l \), where \(l \leq m \).

- **Decoding**: Once \([a_1, a_2, ..., a_l]^T \) is obtained, we want to reconstruct the full \([x_1, x_2, ..., x_l, ..., x_m]^T \).
 \[
 \mathbf{x} = \mathbf{Q} a = [q_1, q_2, ..., q_l][a_1, a_2, ..., a_l]^T = \hat{\mathbf{x}}.
 \]

Or, alternatively
 \[
 \hat{\mathbf{x}} = \mathbf{Q} [a_1, a_2, ..., a_l, 0, 0, ..., 0]^T.
 \]

\(m - l \) zeros

PCA Example

\[0.70285 \ -0.71134
0.71134 \ 0.70285
\]

\(\lambda =
\[
[0.14425 \ 0.00000
0.00000 \ 0.02161]
\]

PCA: Total Variance

- The total variance of the \(m \) components of the data vector is
 \[
 \sum_{j=1}^{m} \sigma_{j}^2 = \sum_{j=1}^{m} \lambda_j.
 \]

- The truncated version with the first \(l \) components have variance
 \[
 \sum_{j=1}^{l} \sigma_{j}^2 = \sum_{j=1}^{l} \lambda_j.
 \]

- The larger the variance in the truncated version, i.e., the smaller
 the variance in the remaining components, the more accurate the
 dimensionality reduction.

Factor Analysis

- **Find a small number of factors** \(\mathbf{z} \), which when combined generate \(\mathbf{x} \):
 \[
 \mathbf{x}_i - \mu_i = \nu_{i1}z_1 + \nu_{i2}z_2 + ... + \nu_{ik}z_k + \varepsilon_i
 \]

 where \(z_i, j = 1, ..., k \) are the latent factors with
 \[
 \mathbb{E}[z_j]=0, \ \text{Var}(z_j)=1, \ \text{Cov}(z_i, z_j)=0, \ i \neq j,
 \]

 \(\varepsilon_i \) are the noise sources
 \[
 \mathbb{E}[\varepsilon_i]=\psi_i, \ \text{Cov}(\varepsilon_i, \varepsilon_j)=0, \ i \neq j, \ \text{Cov}(\varepsilon_i, z_j)=0
 \]

 and \(\nu_{ij} \) are the factor loadings
PCA vs FA

- **PCA** (Principal Component Analysis)
 - From x to z
 \[z = W^T(x - \mu) \]

- **FA** (Factor Analysis)
 - From z to x
 \[x - \mu = Vz + \varepsilon \]

Factor Analysis

- In FA, factors z_j are stretched, rotated and translated to generate x.

Singular Value Decomposition and Matrix Factorization

- Singular value decomposition: $X = V A W^T$
 - V is $N \times N$ and contains the eigenvectors of $X X^T$
 - W is $d \times d$ and contains the eigenvectors of $X^T X$
 - A is $N \times d$ and contains singular values on its first k diagonal

- $X = u_1 a_1 v_1^T + \ldots + u_k a_k v_k^T$ where k is the rank of X

Multidimensional Scaling

- Given pairwise distances between N points, $d_{ij}, i,j = 1, \ldots, N$.
 - Place on a low-dim map such that distances are preserved (by feature embedding).

- $z = g(x \mid \theta)$
 - Find θ that minimizes Sammon stress:
 \[
 E(\theta \mid X) = \sum_{r,s} \frac{\left(\| z_r - z_s \| - \| x_r - x_s \| \right)^2}{\| x_r - x_s \|^2}
 \]
 \[
 = \sum_{r,s} \frac{\left(g(x_r \mid \theta) - g(x_s \mid \theta) - \| x_r - x_s \| \right)^2}{\| x_r - x_s \|^2}
 \]
A topological space that is locally Euclidean (flat, not curved).

Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.
- Straight line, wiggly curves, etc. are 1D manifolds.
- Flat plane, surface of sphere, etc. are 2D manifolds.

Detecting curvature of space: sum of internal angles of triangle = 180°?

Isomap

- Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space.
Geodesic Distance

Geodesic distance = Shortest path.

- A: Manifold with two points.
- B: Euclidean distance between the two points.
- C: Geodesic distance between the two points.

Isomap

Instances r and s are connected in the graph if

- \(| x^r - x^s | < \varepsilon \) or if \(x^s \) is one of the \(k \) neighbors of \(x^r \)

The edge length is \(| x^r - x^s | \)

- For two nodes \(r \) and \(s \) not connected, the distance is equal to the shortest path between them

- Once the \(N \times N \) distance matrix is thus formed, use MDS to find a lower-dimensional mapping

Locally Linear Embedding

1. Given \(x^r \) find its neighbors \(x^s_{(r)} \)
2. Find \(W_{rs} \) that minimize

\[
E(W | X) = \sum_r | x^r - \sum_s W_{rs} x^s_{(r)} |^2
\]

3. Find the new coordinates \(z^r \) that minimize

\[
E(z | W) = \sum_r | z^r - \sum_s W_{rs} z^s_{(r)} |^2
\]
LLE on Optdigits

References