Search and Game Playing

- Uninformed search
- Informed search
- Iterative improvement, Constraint satisfaction
- Game playing

Overview: Uninformed search

- Search problems: definition
- Example: 8-puzzle
- General search
- Evaluation of search strategies
- Strategies: breadth-first, uniform-cost, depth-first
- More uninformed search: depth-limited, iterative deepening, bidirectional search

Search Problems: Definition

\[\text{Search} = \langle \text{initial state, operators, goal states} \rangle \]

- Initial State: description of the current situation as given in a problem
- Operators: functions from any state to a set of successor (or neighbor) states
- Goal: subset of states, or test rule

Variants of Search Problems

\[\text{Search} = \langle \text{state space, initial state, operators, goal states} \rangle \]

- State space: set of all possible states reachable from the current initial state through repeated application of the operators (i.e. path).

\[\text{Search} = \langle \text{initial state, operators, goal states, path cost} \rangle \]

- Path cost: find the best solution, not just a solution. Cost can be many different things.
Types of Search

- Uninformed: systematic strategies
- Informed: Use domain knowledge to narrow search
- Game playing as search: minimax, state pruning, probabilistic games

Search State

State as Data Structure

- examples: variable assignment, properties, order in list, bitmap, graph (vertex and edges)
- captures all possible ways world could be
- typically static, discrete (symbolic), but does not have to be

Choosing a Good Representation

- concise (keep only the relevant features)
- explicit (easy to compute when needed)
- embeds constraints

Operators

Function from state to subset of states

- drive to neighboring city
- place piece on chess board
- add person to meeting schedule
- slide tile in 8-puzzle

Characteristics

- often requires instantiation (fill in variables)
- encode constraints (only certain operations are allowed)
- generally discrete: continuous parameters → infinite branching

Goals: Subset of states or test rules

Specification:

- set of states: enumerate the eligible states
- partial description: e.g. a certain variable has value over x.
- constraints: or set of constraints. Hard to enumerate all states matching the constraints, or very hard to come up with a solution at all (i.e. you can only verify it; P vs. NP).

Other considerations:

- space, time, quality (exact vs. approximate trade-offs)
An Example: 8-Puzzle

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

→ ... ↑ ... ← ... ↓

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

• State: location of 8 number tiles and one blank tile

• Operators: blank moves left, right, up, or down

• Goal test: state matches the configuration on the right (see above)

• Path cost: each step cost 1, i.e. path length, or search tree depth

Generalization: 15-puzzle, ..., \((N^2 - 1)\)-puzzle

Goal Test

As simple as a single LISP call:

* (defvar *goal-state* '(1 2 3 8 0 4 7 6 5))
* GOAL-STATE*
* (equal *goal-state* '(1 2 3 8 0 4 7 6 5))
T

Possible state representations in LISP (0 is the blank):

• (0 2 3 1 8 4 7 6 5)

• ((0 2 3) (1 8 4) (7 6 5))

• ((0 1 7) (2 8 6) (3 4 5))

• or use the make-array, aref functions.

How easy to: (1) compare, (2) operate on, and (3) store (i.e. size).
General Search Algorithm

Pseudo-code:

function General-Search (problem, Que-Fn)
 node-list := initial-state
 loop begin
 // fail if node-list is empty
 if Empty(node-list) then return FAIL
 // pick a node from node-list
 node := Get-First-Node(node-list)
 // if picked node is a goal node, success!
 if (node == goal) then return as SOLUTION
 // otherwise, expand node and enqueue
 node-list := Que-Fn(node-list, Expand(node))
 loop end

Evaluation of Search Strategies

- time-complexity: how many nodes expanded so far?
- space-complexity: how many nodes must be stored in node-list at any given time?
- completeness: if solution exists, guaranteed to be found?
- optimality: guaranteed to find the best solution?

Breadth First Search

- node visit order (goal test): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- queuing function: enqueue at end (add expanded node at the end of the list)

BFS: Expand Order

Evolution of the queue (bold = expanded and added children):

1. [1] : initial state
2. [2][3] : dequeue 1 and enqueue 2 and 3
3. [3] [4][5] : dequeue 2 and enqueue 4 and 5
4. [4] [5][6][7] : all depth 3 nodes
...
8. [8][9][10][11][12][13][14][15] : all depth 4 nodes
BFS: Evaluation

branching factor \(b \), depth of solution \(d \):
- complete: it will find the solution if it exists
- time: \(1 + b + b^2 + \ldots + b^d \)
- space: \(O(b^{d+1}) \) where \(d \) is the depth of the shallowest solution
- space is more problem than time in most cases (p 75, figure 3.12).
- time is also a major problem nonetheless (same as time)

Depth First Search

- node visit order (goal test): 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15
- queuing function: enqueue at left (stack push; add expanded node at the beginning of the list)

Uniform Cost

BFS with expansion of lowest-cost nodes: path cost is \(g(node) \).
- BFS: \(g(n) = \text{Depth}(node) \)

Depth First Search: Expand Order

Evolution of the queue (bold = expanded and added children):
1. [1] : initial state
2. [2][3] : pop 1 and push expanded in the front
3. [4][5] [3] : pop 2 and push expanded in the front
4. [8][9] [5] [3] : pop 4 and push expanded in the front
DFS: Evaluation

- **branching factor** b, **depth of solutions** d, **max depth** m:
 - incomplete: may wander down the wrong path
 - **time:** $O(b^m)$ nodes expanded (worst case)
 - **space:** $O(bm)$ (just along the current path)
 - good when there are many shallow goals
 - bad for deep or infinite depth state space

Implementation

- Use of stack or queue: explicit storage of expanded nodes
- Recursion: implicit storage in the recursive call stack

Key Points

- Description of a search problem: initial state, goals, operators, etc.
- Considerations in designing a representation for a state
- **Evaluation criteria**
- BFS, UCS, DFS: time and space complexity, completeness
- Differences and similarities between BFS and UCS
- When to use one vs. another
- Node visit orders for each strategy
- Tracking the stack or queue at any moment

Depth Limited Search (DLS): Limited Depth DFS

- node visit order for each depth limit l:
 1 ($l = 1$); 1 2 3 ($l = 2$); 1 2 4 5 3 6 7 ($l = 3$);
- queuing function: enqueue at front (i.e. stack push)
- **push the depth of the node as well:**
 ($<$depth$>$ $<$node$>$)
DLS: Expand Order

Evolution of the queue (bold = expanded and then added):
((depth, node)); Depth limit = 3
1. ((d1, 1)) : initial state
2. [(d2, 2)][(d2, 3)] : pop 1 and push 2 and 3
3. [(d3, 4)][(d3, 5)][(d2, 3)] : pop 2 and push 4 and 5
4. [(d3, 5)][(d2, 3)] : pop 4, cannot expand it further
5. [(d2, 3)] : pop 5, cannot expand it further
6. [(d3, 6)][(d3, 7)] : pop 3, and push 6, 7
... 25

IDS: Expand Order

Basically the same as DLS: Evolution of the queue (bold = expanded and then added):
((depth, node)); e.g. Depth limit = 3
1. ((d1, 1)) : initial state
2. [(d2, 2)][(d2, 3)] : pop 1 and push 2 and 3
3. [(d3, 4)][(d3, 5)][(d2, 3)] : pop 2 and push 4 and 5
4. [(d3, 5)][(d2, 3)] : pop 4, cannot expand it further
5. [(d2, 3)] : pop 5, cannot expand it further
6. [(d3, 6)][(d3, 7)] : pop 3, and push 6, 7
...

DLS: Evaluation

branching factor b, depth limit l, depth of solution d:

- complete: if $l \geq d$
- time: $O(b^l)$ nodes expanded (worst case)
- space: $O(bl)$ (same as DFS, where $l = m$ (m: max depth of tree in DFS)
- good if solution is within the limited depth.
- non-optimal (same problem as in DFS).

Iterative Deepening Search: DLS by Increasing Limit

- node visit order:
 1 ; 1 2 3 ; 1 2 4 5 3 6 7 ; 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15 ; ...
- revisits already explored nodes at successive depth limit
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: ((depth, node))

IDS: Expand Order

Basically the same as DLS: Evolution of the queue (bold = expanded and then added):
((depth, node)); e.g. Depth limit = 3
1. ((d1, 1)) : initial state
2. [(d2, 2)][(d2, 3)] : pop 1 and push 2 and 3
3. [(d3, 4)][(d3, 5)][(d2, 3)] : pop 2 and push 4 and 5
4. [(d3, 5)][(d2, 3)] : pop 4, cannot expand it further
5. [(d2, 3)] : pop 5, cannot expand it further
6. [(d3, 6)][(d3, 7)] : pop 3, and push 6, 7
... 28
IDS: Evaluation

branching factor b, depth of solution d:

- complete: cf. DLS, which is conditionally complete
- time: $O(b^d)$ nodes expanded (worst case)
- space: $O(bd)$ (cf. DFS and DLS)
- optimal! unlike DFS or DLS
- good when search space is huge and the depth of the solution is not known (*)

Bidirectional Search (BDS)

- Search from both initial state and goal to reduce search depth.
- $O(b^{d/2})$ of BDS vs. $O(b^{d+1})$ of BFS.

BDS: Considerations

1. how to back trace from the goal?
2. successors and predecessors: are operations reversible?
3. are goals explicit?: need to know the goal to begin with
4. check overlap in two branches
5. BFS? DFS? which strategy to use? Same or different?

BDS Example: 8-Puzzle

- Is it a good strategy?
- What about Chess? Would it be a good strategy?
- What kind of domains may be suitable for BDS?
Avoiding Repeated States

Repeated states can be devastating in search problems.

- Common cases: problems with reversible operators → search space becomes infinite
- One approach: find a spanning tree of the graph

Avoiding Repeated States: Strategies

- Do not return to the node’s parent
- Avoid cycles in the path (this is a huge theoretical problem in its own right)
- Do not generate states that you generated before: use a hash table to make checks efficient

How to avoid storing every state? Would using a short signature (or a checksum) of the full state description help?

Key Points

- DLS, IDS, BDS search order, expansions, and queuing
- DLS, IDS, BDS evaluation
- DLS, IDS, BDS: suitable domains
- Repeated states: why removing them is important

Overview: Informed search, Iterative Improvement

- Best-first search
- Heuristic function
- Greedy best-first search
- A^*
- Designing good heuristics
- IDA^*
- Iterative improvement algorithms
 1. Hill-climbing
 2. Simulated annealing
Informed Search

From domain knowledge, obtain an evaluation function.

- best-first search: order nodes according to the evaluation function value
- greedy search: minimize estimated cost for reaching the goal – fast, but incomplete and non-optimal.
- A* : minimize \(f(n) = g(n) + h(n) \), where \(g(n) \) is the current path cost from start to \(n \), and \(h(n) \) is the estimated cost from \(n \) to goal.

Best First Search

function Best-First-Search \((\text{problem}, \text{Eval-Fn})\)

\[
\text{Queuing-Fn} \leftarrow \text{sorted list by \text{Eval-Fn}(node)}
\]

\text{return} \ General-Search \((\text{problem}, \text{Queuing-Fn})\)

- The queuing function queues the expanded nodes, and sorts it every time by the \text{Eval-Fn} value of each node.
- One of the simplest Eval-Fn: estimated cost to reach the goal.

Heuristic Function

- \(h(n) \) = estimated cost of the cheapest path from the state at node \(n \) to a goal state.
- The only requirement is the \(h(n) = 0 \) at the goal.
- **Heuristics** means “to find” or “to discover”, or more technically, “how to solve problems” (Polya, 1957).

Heuristics: Example

- \(h_{\text{SLD}}(n) \): straight line distance (SLD) is one example.
- Start from A and Goal is I: C is the most promising next step in terms of \(h_{\text{SLD}}(n) \), i.e., \(h(C) < h(B) < h(F) \)
- Requires some knowledge:
 1. coordinates of each city
 2. generally, cities toward the goal tend to have smaller SLD.
Greedy Best-First Search

function Greedy-Best-First Search *(problem)*

\[h(n) = \text{estimated cost from } n \text{ to goal} \]

return Best-First-Search*(problem, h)*

- Best-first with heuristic function \(h(n) \)

Greedy Best-First Search: Evaluation

Branching factor \(b \) and max depth \(m \):

- Fast, just like Depth-First-Search: single path toward the goal.
- Time: \(O(b^m) \)
- Space: same as time – all nodes are stored in sorted list(!), unlike DFS
- Incomplete, just like DFS
- Non-optimal, just like DFS

\[f(n) = g(n) + h(n) \]

- provably complete and optimal!
- restrictions: \(h(n) \) should be an admissible heuristic
- admissible heuristic: one that never underestimate the actual cost of the best solution through \(n \)
A* Search

function A^*-Search (problem)

$g(n) =$ current cost up till n

$h(n) =$ estimated cost from n to goal

return Best-First-Search(problem, $g + h$)

- Condition: $h(n)$ must be an admissible heuristic function!
- A^* is optimal!

Behavior of A* Search

- usually, the f value never decreases along a given path: monotonicity
- in case it is nonmonotonic, i.e. $f(Child) < f(Parent)$, make this adjustment:
 $$f(Child) = \max(f(Parent), g(Child) + h(Child)).$$
- this is called pathmax

Optimality of A*

G_2: suboptimal goal in the node-list.

n: unexpanded node on a shortest path to goal G_1

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $> g(G_1)$ since G_2 is suboptimal
- $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion.
1. **Expansion of parent allowed**: search fails at nodes B, D, and E.
2. **Expansion of parent disallowed**: paths through nodes B, D, and E will have an inflated path cost \(g(n) \), thus will become nonoptimal.

\[
A \rightarrow C \rightarrow E \rightarrow C \rightarrow A \rightarrow F \rightarrow ...
\]

Complexity of A

\(A^* \) is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

- **Condition for subexponential growth**:
 \[
 |h(n) - h^*(n)| \leq O(\log h^*(n)),
 \]
 where \(h^*(n) \) is the true cost from \(n \) to the goal.

- That is, error in the estimated cost to reach the goal should be less than even linear, i.e. \(< O(h^*(n)) \).

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. \(\geq O(h^*(n)) > O(\log h^*(n)) \).

Lemma to Optimality of \(A^* \)

Lemma: \(A^* \) expands nodes in order of increasing \(f(n) \) value.

- Gradually adds **f-contours** of nodes (cf. BFS adds layers).
- The goal state may have a \(f \) value: let’s call it \(f^* \).
- This means that all nodes with \(f < f^* \) will be expanded!
Problem with A*

Space complexity is usually **exponential**!
- we need a memory bounded version
- one solution is: Iterative Deepening A*, or IDA*

Heuristic Functions: Example

Eight puzzle

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total **Manhattan** distance (city block distance)

\[
\begin{align*}
 h_1(n) &= 7 \text{ (not counting the blank tile)} \\
 h_2(n) &= 2+3+3+2+4+2+0+2 = 18
\end{align*}
\]

* Both are admissible heuristic functions.

A*: Evaluation

- Complete: unless there are infinitely many nodes with $f(n) \leq f(G)$
- Time complexity: exponential in (relative error in $h \times$ length of solution)
- Space complexity: same as time (keep all nodes in memory)
- Optimal

Dominance

If $h_2(n) \geq h_1(n)$ for all n and both are admissible, then we say that $h_2(n)$ **dominates** $h_1(n)$, and is better for search.

Typical search costs for depth $d = 14$:
- Iterative Deepening: 3,473,941 nodes expanded
- $A^*(h_1)$: 539 nodes
- $A^*(h_2)$: 113 nodes

Observe that in A^*, every node with $f < f^*$ is expanded. Since $f = g + h$, nodes with $h(n) < f^* - g(n)$ will be expanded, so larger h will result in less nodes being expanded.
- f^* is the f value for the optimal solution path.
Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:
- allow tiles to move anywhere → $h_1(n)$
- allow tiles to move to any adjacent location → $h_2(n)$

For traveling:
- allow traveler to travel by air, not just by road: SLD

Other Heuristic Design

- Use composite heuristics: $h(n) = \max(h_1(n), ..., h_m(n))$
- Use statistical information: random sample h and true cost to reach goal. Find out how often h and true cost is related.

Iterative Deepening A^*: IDA^*

A^* is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain f bound, and gradually increase the f bound until a solution is found.
- More on IDA^* next time.

IDA^*

function $IDA^*(problem)$

root ← Make-Node(Initial-State(problem))

f-limit ← f-Cost(root)

loop do

solution, f-limit ← DFS-Contour(root, f-limit)

if solution != NULL then return solution

if f-limit == ∞ then return failure

end loop

Basically, iterative deepening depth-first-search with depth defined as the f-cost ($f = g + n$):
DFS-Contour($root$, f-limit)

Find solution from node $root$, within the f-cost limit of f-limit.
DFS-Contour returns solution sequence and new f-cost limit.

- if f-cost($root$) $> f$-limit, return fail.
- if $root$ is a goal node, return solution and new f-cost limit.
- recursive call on all successors and return solution and minimum f-limit returned by the calls
- return null solution and new f-limit by default

Similar to the recursive implementation of DFS.

IDA*: Evaluation

- complete and optimal (with same restrictions as in A^*)
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values $h(n)$ can assume.

IDA*: Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values \rightarrow small number of f-contours to explore \rightarrow becomes similar to A^*

- complex problems: each f-contour only contain one new node
 if A^* expands N nodes,
 IDA^* expands
 $1 + 2 + \ldots + N = \frac{N(N+1)}{2} = O(N^2)$
- a possible solution is to have a fixed increment ϵ for the f-limit \rightarrow solution will be suboptimal for at most ϵ (ϵ-admissible)

Other Methods: Beam Search

Best-first search with a fixed limited branching factor

- expand the first n nodes with the best Eval-Fn value, where n is a small number.
- n is called the width of the beam
- good for domains with continuous time functions (like speech recognition)
- good for domains with huge branching factor (like above)
Iterative Improvement Algorithms

Start with a complete configuration (all variable values assigned, and optimal), and gradually improve it.

• Hill-climbing (maximize cost function)
• Gradient descent (minimize cost function)
• Simulated Annealing (probabilistic)

Hill-Climbing

• no queue, keep only the best node
• greedy, no back-tracking
• good for domains where all nodes are solutions:
 – goal is to improve quality of the solution
 – optimization problems
• note that it is different from greedy search, which keeps a node list

Hill-Climbing Strategies

Problems of local maxima, plateau, and ridges:

• try random-restart: move to a random location in the landscape and restart search from there
• keep n best nodes (beam search) *
• parallel search
• simulated annealing *

Hardness of problem depends on the shape of the landscape.
*: coming up next

Hill-Climbing: Problems

• Possible solution: simulated annealing – gradually decrease randomness of move to attain globally optimal solution (more on this next week).
Simulated Annealing: Overview

Annealing:
- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:
- basically, hill-climbing with randomness that allows going down as well as the standard up
- randomness (as temperature) is reduced over time

Simulated Annealing (SA)

Goal: minimize the energy E, as in statistical thermodynamics.

For successors of the current node,
- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E > 0$, the move is accepted with probability $P(\Delta E) = e^{-\frac{\Delta E}{kT}}$, where k is the Boltzmann constant and T is temperature.
- randomness is in the comparison: $P(\Delta E) < \text{rand}(0, 1)$

$\Delta E = E_{\text{new}} - E_{\text{old}}$.
The heuristic $h(n)$ or $f(n)$ represents E.

Temperature and $P(\Delta E) < \text{rand}(0, 1)$

Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.
- Higher temperature T → higher probability of downward hill-climbing
- Lower ΔE → higher probability of downward hill-climbing

T Reduction Schedule

High to low temperature reduction schedule is important:
- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter? linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.
Simulated Annealing Applications

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

Constraint Satisfaction Search

Constraint Satisfaction Problem (CSP):

- **state**: values of a set of **variables**
- **goal**: test if a set of constraints are met
- **operators**: set values of variables
- general search can be used, but specialized solvers for CSP work better

Constraints

- Unary, binary, and higher order constraints: how many variables should simultaneously meet the constraint
- Absolute constraints vs. preference constraints
- Variables are defined in a certain **domain**, which determines the possible set of values, either discrete or continuous.

This is part of a much more complex problem called **constrained optimization problems** in operations research consisting of cost function (either minimize or maximize) and several constraints. Problems can be linear, nonlinear, convex, nonconvex, etc. Straight-forward solutions exist for a limited subclass of these (for example, for linear programming problems can be solved by the simplex method).

CSP: continued

- CSPs include NP-complete problems such as 3-SAT, thus finding the solutions can require exponential time.
- However, constraints can help narrow down the possible options, therefore reducing the branching factor. This is because in CSP, the goal can be decomposed into several constraints, rather than being a whole solution.
- Strategies: backtracking (back up when constraint is violated), forward checking (do not expand further if look-ahead returns a constraint violation). Forward checking is often faster and simple to implement.
Heuristics for Constraint Satisfaction Problems

General strategies for variable selection:

• Most-constrained-variable heuristic (var with fewest possible values)

• Most-constraining-variable heuristic (var involved in the largest number of constraints)

and for value assignment:

• Least-constraining-value heuristic (value that rules out the smallest number of values for vars)

Reducing branching factor vs. leaving freedom for future choices.

Key Points

• best-first-search: definition

• heuristic function $h(n)$: what it is

• greedy search: relation to $h(n)$ and evaluation. How it is different from DFS (time complexity, space complexity)

• A^*: definition, evaluation, conditions of optimality

• complexity of A^*: relation to error in heuristics

• designing good heuristics: several rule-of-thumbs

• IDA^*: evaluation, time and space complexity (worst case)

• beam search concept

• hill-climbing concept and strategies

• simulated annealing: core algorithm, effect of T and ΔE, source of randomness.

Game Playing

• attractive AI problem because it is abstract

• one of the oldest domains in AI

• in most cases, the world state is fully accessible

• computer representation of the situation can be clear and exact

• challenging: uncertainty introduced by the opponent and the complexity of the problem (full search is impossible)

• hard: in chess, branching factor is about 35, and 50 moves by each player = 35^{100} nodes to search
 - compare to 10^{40} possible legal board states

• game playing is more like real life than mechanical search
Games vs. Search Problems

“Unpredictable” opponent → solution is a contingency plan

Time limits → unlikely to find goal, must approximate

Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952–57)
- pruning to reduce costs (McCarthy, 1956)

Types of Games

<table>
<thead>
<tr>
<th></th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfect info</td>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>imperfect info</td>
<td>?</td>
<td>bridge, poker, scrabble</td>
</tr>
</tbody>
</table>

Two-Person Perfect Information Game

- initial state: initial position and who goes first
- operators: legal moves
- terminal test: game over?
- utility function: outcome (win:+1, lose:-1, draw:0, etc.)

- two players (MIN and MAX) taking turns to maximize their chances of winning (each turn generates one ply)
- one player’s victory is another’s defeat
- need a strategy to win no matter what the opponent does

Minimax: Strategy for Two-Person Perfect Info

- generate the whole tree, and apply util function to the leaves
- go back upward assigning utility value to each node
- at MIN node, assign min(successors’ utility)
- at MAX node, assign max(successors’ utility)
- assumption: the opponent acts optimally
Minimax Decision

```plaintext
function Minimax-Decision (game) returns operator
  return operator that leads to a child state with the max(Minimax-Value(child state,game))
```

```plaintext
function Minimax-Value(state,game) returns utility value
  if Goal(state), return Utility(state)
  else if Max's move then
    return max of successors' Minimax-Value
  else
    return min of successors' Minimax-Value
```

Minimax Exercise

```
MAX

MIN

MAX

-1  -4  1  3  2  6  30  1  6  1  10  3  4
-1 -4  9
```

Minimax: Evaluation

Branching factor b, max depth m:

- **complete**: if the game tree is finite
- **optimal**: if opponent is optimal
- **time**: b^m
- **space**: bm – depth-first (only when utility function values of all nodes are known!)

Resource Limits

- **Time limit**: as in Chess → can only evaluate a fixed number of paths
- **Approaches**:
 - **evaluation function**: how desirable is a given state?
 - **cutoff test**: depth limit
 - **pruning**

Depth limit can result in the **horizon effect**: interesting or devastating events can be just over the horizon!
Evaluation Functions

For chess, usually a linear weighted sum of feature values:

- \(\text{Eval}(s) = \sum_i w_i f_i(s) \)
- \(f_i(s) = (\text{number of white piece } X) - (\text{number of black piece } X) \)
- other features: degree of control over the center area
- exact values do not matter: the order of Minimax-Value of the successors matter.

\[\text{MAX} \geq 4\]
\[\text{MIN} \leq 2\]

\(\alpha\) Cuts

When the current max value is greater than the successor’s min value, don’t look further on that min subtree:

\(\beta\) Cuts

When the current min value is less than the successor’s max value, don’t look further on that max subtree:

\(\alpha - \beta\) Pruning

- memory of best MAX value \(\alpha\) and best MIN value \(\beta\)
- do not go further on any one that does worse than the remembered \(\alpha\) and \(\beta\)

Right subtree can be at most 2, so \(\text{MAX}\) will always choose the left path regardless of what appears next.

Right subtree can be at least 5, so \(\text{MIN}\) will always choose the left path regardless of what appears next.
\(\alpha - \beta \) Exercise

\[\begin{array}{c}
\text{MAX} \\
\text{MIN} \\
\text{MAX}
\end{array} \]

-1 -4 1 3 2 6 30 -1 -4 -10 1 6 1 10 -1 9 3 4

\(\alpha - \beta \) Pruning Properties

Cut off nodes that are known to be suboptimal.

Properties:

- pruning does not affect final result
- good move ordering improves effectiveness of pruning
- with perfect ordering, time complexity = \(b^{m/2} \)
 \(\rightarrow \) doubles depth of search
 \(\rightarrow \) can easily reach 8-ply in chess
- \(b^{m/2} = (\sqrt{b})^m \), thus \(b = 35 \) in chess reduces to
 \(b = \sqrt{35} \approx 6 \) !!!

Key Points

- Game playing: what are the types of games?
- Minimax: definition, and how to get minmax values
- Minimax: evaluation
- \(\alpha - \beta \) pruning: why it saves time

Up-coming Topics

- formal \(\alpha - \beta \) pruning algorithm
- \(\alpha - \beta \) pruning properties
- games with an element of chance
- state-of-the-art game playing with AI
- more complex games
\(\alpha - \beta\) Pruning: Initialization

Along the path from the beginning to the current state:

- \(\alpha\): best MAX value
 - initialize to \(-\infty\)
- \(\beta\): best MIN value
 - initialize to \(\infty\)

\(\alpha - \beta\) Pruning Algorithm: Max-Value

\[
\text{function Max-Value(state, game, } \alpha, \beta \text{) return utility value} \\
\alpha: \text{ best MAX on path to state } \; \beta: \text{ best MIN on path to state} \\
\text{if Cutoff(state) then return Utility(state)} \\
v \leftarrow -\infty \\
\text{for each } s \text{ in Successor(state) do} \\
\quad \cdot v \leftarrow \text{Max}(\alpha, \text{Min-Value}(s, \text{game, } \alpha, \beta)) \\
\quad \cdot \text{if } v \geq \beta \text{ then return } v \quad */ \text{CUT!!} */ \\
\quad \cdot \alpha \leftarrow \text{Max}(\alpha, v) \\
\text{end} \\
\text{return } v
\]

\(\alpha - \beta\) Pruning Algorithm: Min-Value

\[
\text{function Min-Value(state, game, } \alpha, \beta \text{) return utility value} \\
\alpha: \text{ best MAX on path to state } \; \beta: \text{ best MIN on path to state} \\
\text{if Cutoff(state) then return Utility(state)} \\
v \leftarrow \infty \\
\text{for each } s \text{ in Successor(state) do} \\
\quad \cdot v \leftarrow \text{Min}(\beta, \text{Max-Value}(s, \text{game, } \alpha, \beta)) \\
\quad \cdot \text{if } v \leq \alpha \text{ then return } v \quad */ \text{CUT!!} */ \\
\quad \cdot \beta \leftarrow \text{Min}(\beta, v) \\
\text{end} \\
\text{return } v
\]

\(\alpha - \beta\) Pruning Tips

- At a MAX node:
 - Only \(\alpha\) is updated with the MAX of successors.
 - Cut is done by checking if returned \(v \geq \beta\).
 - If all fails, MAX(\(v\) of successors) is returned.
- At a MIN node:
 - Only \(\beta\) is updated with the MIN of successors.
 - Cut is done by checking if returned \(v \leq \alpha\).
 - If all fails, MIN(\(v\) of successors) is returned.
Ordering is Important for Good Pruning

For MIN, sorting successor’s utility in an increasing order is better (shown above; left).

For MAX, sorting in decreasing order is better.

Games With an Element of Chance

Rolling the dice, shuffling the deck of card and drawing, etc.

- chance nodes need to be included in the minimax tree
- try to make a move that maximizes the expected value → expectimax
- expected value of random variable X:
 \[
 E(X) = \sum_x x P(x)
 \]
- expectimax
 \[
 \text{expectimax}(C) = \sum_i P(d_i) \max_{s \in S(C,d_i)} \text{utility}(s)
 \]

Game Tree With Chance Element

- chance element forms a new ply (e.g. dice, shown above)

Design Considerations for Probabilistic Games

- the value of evaluation function, not just the scale matters now!
 (think of what expected value is)
- time complexity: $b^m n^m$, where n is the number of distinct dice rolls
- pruning can be done if we are careful
Historical Achievements in AI Game Playing

- **Checkers**: Samuel's Checker Program running on 10Kbyte (1952)
- **Backgammon**: Tesauro's Neural Network → top three (1992)
- **Chess**: IBM's Deep Blue defeated Garry Kasparov (1997)
- **Othello (Reversi)**: smaller search space → superhuman performance

Genetic algorithms can perform very well on select domains.

Hard Games

The game of Go, popular in East Asia:
- $19 \times 19 = 361$ grid: branching factor is huge!
- search methods inevitably fail: need more structured rules
- the bet was high: $1,400,000$ prize for the first computer program to beat a select, 12-year old player. The late Mr. Ing Chang Ki (photo above) put up the money from his personal funds.

Deep Learning based Game Playing

- **AlphaGo** by Google DeepMind beat the Korean Go grand master Lee Sedol in 2016 (4 to 1).
- AlphaGo combined deep reinforcement learning with tree search.

Google DeepMind really seems to like games! :-)

- **Atari 2600 games**: DeepMind (2015)
- **Chess, Shogi (Japanese chess), Go**: Alpha Zero (2017)
- **Atari games + Multiple board games, without knowledge of the rules**: MuZero (2019)
- **Starcraft II**: AlphaStar (2019)
Key Points

- formal $\alpha - \beta$ pruning algorithm: know how to apply pruning
- $\alpha - \beta$ pruning properties: evaluation
- games with an element of chance: what are the added elements? how does the minmax tree get augmented?

Emacs Tips

M-x : [Alt]-[x] or [ESC] then [x], C-x : [CTRL]-[x]

- M-x shell (run shell within emacs)
- C-p (↑), C-n (↓), C-b (←), C-f (→)
- C-x C-f (load file)
- M-x lisp-mode (environment for editing lisp code)
- C-s (search forward) C-r (reverse search)
- C-g (abort current command in scratch)
- C-k (cut line) C-y (yank, or paste)
- C-space (begin block) C-x C-x (end block) C-w (cut) C-y (yank, or paste)
- C-x u or M-x undo (undo) ; C-x C-s (save) ; C-x C-c (exit)