Introduction to Deep Learning

625 Lecture, Spring 2020

Yoonsuck Choe, Ph.D.
Professor, Texas A&M University

What Is Deep Learning?
• Learning higher level abstractions/representations from data.
• Motivation: how the brain represents and processes sensory information in a hierarchical manner.

From LeCun's Deep Learning Tutorial

Brief Intro to Neural Networks

Deep learning is based on neural networks.
• Weighted sum followed by nonlinear activation function.
• Weights changed with gradient descent (η = learning rate, E=err):

$$w_{ij} \leftarrow w_{ij} - \eta \frac{\partial E}{\partial w_{ij}}$$

Intro to Neural Network: Backpropagation

Weight w_{ji} is updated as: $w_{ji} \leftarrow w_{ji} + \eta \delta_j a_i$, where
• a_i: activity at input side of weight w_{ji}.
• Hidden to output weights (thick red weight). T_k is target value.

$$\delta_k = (T_k - a_k)\sigma'(net_k)$$

• Deeper weights (green line in figure above).

$$\delta_j = \sum_k w_{kj} \delta_k \sigma'(net_j)$$
What Neurons Do in a Neural Network

Two points of view (both are valid):

- Function approximation
- Decision boundary

* Represent input features – more on this later.

Function Approximation

- Assume one input unit (scalar value).
- Depending on # of hidden layers, # of hidden units, etc., function with any complex shape can be learned. Ex: \(y = \sin(x) \).

Example: \(y = \sin(x) \)

- Top: \(\sin(x) \) nnet: Model=[# of units, activation func, [next layer spec], ...]
- Bottom: \(\sin(x) \) vs. the hidden unit’s output of last hidden layer.

Ex: \(y = \sin(x) \) Model=[2,tanh:1,linear]

- One hidden layer with 2 units, One output unit. [2,tanh:1,linear]
- Bottom plot: Hidden neurons represent sigmoids.
- Top plot: Output unit is a linear combination of two sigmoids.
Ex: $y = \sin(x)$ Model=[20,tanh:3,tanh:1,linear]

- 2nd hidden layer represents linear combination of 20 sigmoids.

Ex: $y = \sin(x)$ Model=[20,tanh:5,tanh:1,linear]

- Out-of-range inputs illustrate the limitation of DL.

Ex: $y = \sin(x)$ Model=[30,tanh:1,linear]

- Does a single hidden layer suffice? – Yes, with enough neurons.

Decision Boundary

Perceptrons (step function activation) can only represent **linearly separable** functions.

- Output of the perceptron:

 \[W_0 \times I_0 + W_1 \times I_1 - t > 0, \text{ then output is } 1 \]

 \[W_0 \times I_0 + W_1 \times I_1 - t \leq 0, \text{ then output is } -1 \]

If activation function is sigmoid, decision is a smooth ramp.
Rearranging
\[W_0 \times I_0 + W_1 \times I_1 - t > 0, \text{ then output is 1,} \]
we get (if \(W_1 > 0 \))
\[I_1 > \frac{-W_0}{W_1} \times I_0 + \frac{t}{W_1}, \]
where points above the line, the output is 1, and -1 for those below the line.

Compare with
\[y = \frac{-W_0}{W_1} \times x + \frac{t}{W_1}. \]

Only functions where the -1 points and 1 points are clearly separable can be represented by perceptrons.

The geometric interpretation is generalizable to functions of \(n \) arguments, i.e. perceptron with \(n \) inputs plus one threshold (or bias) unit.

Generalizing to \(n \)-Dimensions

\(\vec{n} = (a, b, c), \vec{x} = (x, y, z), \vec{x}_0 = (x_0, y_0, z_0). \)

Equation of the plane: \(\vec{n} \cdot (\vec{x} - \vec{x}_0) = 0 \)

In short, \(ax + by + cz + d = 0 \), where \(a, b, c \) can serve as the weight, and \(d = -\vec{n} \cdot \vec{x}_0 \) as the bias.

For \(n \)-D input space, the decision boundary becomes a \((n - 1)\)-D hyperplane (1-D less than the input space).

Functions/Inputs that can or cannot be separated by a linear boundary.
Deep Learning

- Complex models with large number of parameters
 - Hierarchical representations
 - More parameters = more accurate on training data
 - Simple learning rule for training (gradient-based).

- Lots of data
 - Needed to get better generalization performance.
 - High-dimensional input need exponentially many inputs (curse of dimensionality).

- Lots of computing power: GPGPU, etc.
 - Training large networks can be time consuming.

Decision Boundary in Multilayer Networks

- Example: XOR
 - F1 F2
 - head hid who’id hood

- Multiple decision regions.

Decision Boundary Demo with Tensorflow Playground

- http://playground.tensorflow.org

Deep Learning, in the Context of AI/ML

- Deep Learning: Automating Feature Discovery

- Output
 - Mapping from features
 - Most complex features
 - Simplest features
 - Hand-designed features
 - Features
 - Deep learning
 - Representation learning
 - Classic machine learning
 - Rule-based systems

Fig. 1. Goodfellow
The Rise of Deep Learning

Made popular in recent years

- Andrew Ng & Jeff Dean (Google Brain team, 2012).
- Schmidhuber et al.’s deep neural networks (won many competitions and in some cases showed super human performance; 2011—). Recurrent neural networks using LSTM (Long Short-Term Memory).

Long History (in Hind Sight)

- Fukushima’s Neocognitron (1980).

History: Fukushima’s Neocognitron

- Appeared in journal *Biological Cybernetics* (1980).
- Multiple layers with local receptive fields.
- S cells (trainable) and C cells (fixed weight).
- Deformation-resistant recognition.

History: LeCun’s Convolutional Neural Nets

- Convolution kernel (weight sharing) + Subsampling
- Fully connected layers near the end.
- Became a main-stream method in deep learning.
Motivating Deep Learning: Tensorflow Demo

- http://playground.tensorflow.org
- Demo to explore why deep nnet is powerful and how it is limited.

Current Trends

- Focusing on ground-breaking works in Deep Learning:
 - Convolutional neural networks
 - Deep Q-learning Network (extensions to reinforcement learning)
 - Deep recurrent neural networks using (LSTM)
 - Applications to diverse domains.
 - Vision, speech, video, NLP, etc.
 - Lots of open source tools available.

Deep Convolutional Neural Networks (1)

- Krizhevsky et al. (2012)
- Applied to ImageNet competition (1.2 million images, 1,000 classes).
- Network: 60 million parameters and 650,000 neurons.
- Top-1 and top-5 error rates of 37.5% and 17.0%.
- Trained with backprop.

Deep Convolutional Neural Networks (2)

- Learned kernels (first convolutional layer).
- Resembles mammalian RFs: oriented Gabor patterns, color opponency (red-green, blue-yellow).
Deep Convolutional Neural Networks (3)

• Higher layers represent progressively more complex features.

* From Yann LeCun’s Harvard lecture (2019)

Deep Convolutional Neural Networks (4)

• Left: Bold = correct label. 5 ranked labels: model’s estimation.
• Right: Test (1st column) vs. training images with closest hidden representation to the test data.

Deep Convolutional Neural Networks (5)

• Depth inflation: Deeper is better!

* From Yann LeCun’s Harvard lecture (2019)

Deep Convolutional Neural Networks (6)

• Not just depth but architecture also matters!

* From Yann LeCun’s Harvard lecture (2019)
Deep Convolutional Neural Networks (7)

- Computation vs. performance
* From Yann LeCun's Harvard lecture (2019)

Deep Q-Network (DQN)
- Latest application of deep learning to a reinforcement learning domain (Q as in Q-learning).
- Applied to Atari 2600 video game playing.

DQN Overview
- Input: video screen; Output: Q(s, a); Reward: game score.
- Q(s, a): action-value function
 - Value of taking action a when in state s.
- Input preprocessing
- Experience replay (collect and replay state, action, reward, and resulting state)
-Delayed (periodic) update of Q.
-Moving target Q̂ value used to compute error (loss function L, parameterized by weights θ_i).
 - Gradient descent: \(\frac{\partial L}{\partial \theta_i} \)
DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function \hat{Q} with weights $\theta^* = \theta$
For episode $= 1, M$ do
 Initialize sequence $s_1 = \{x_t\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$
 For $t = 1, T$ do
 With probability ϵ select a random action a_t
 otherwise select $a_t = \arg\max_{a_t} Q(\phi(s_t), a_t; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D
 Sample random minibatch of transitions $(\phi_t, a_t, r_t, \phi_{t+1})$ from D
 Set $y_j = \left\{ \begin{array}{ll}
 r_j + \gamma \max_{a'} Q(\phi_{t+1}, a'; \theta^*) & \text{if episode terminates at step } j + 1 \\
 r_j & \text{otherwise} \end{array} \right.$
 Perform a gradient descent step on $\left(y_j - Q(\phi_j, a_j; \theta)\right)^2$ with respect to the
 network parameters θ
 End For
End For

DQN Results

- Superhuman performance on over half of the games.

DQN Hidden Layer Representation (t-SNE map)

- Similar perception, similar reward clustered.

DQN Operation

- Value vs. game state; Game state vs. action value.
• Feedforward networks: No memory of past input.

• Recurrent networks:
 – Good: Past input affects present output.
 – Bad: Cannot remember too far into the past.

LSTM to the rescue (Hochreiter and Schmidhuber, 1997).

• Built-in recurrent memory that can be written (Input gate), reset (Forget gate), and outputted (Output gate).

Long-term retention possible with LSTM.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short-Term Memory in Action

- Unfold in time and use backprop as usual.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Applications

- Applications: Sequence classification, Sequence translation.

LSTM Applications

- Applications: Sequence classification, Sequence prediction, Sequence translation.

From http://machinelearning.ru
Deep Learning Applications: Vision

- ConvNet sweeping image recognition challenges.

Deep Learning Applications: Speech

- Deep learning led to major improvement in speech recognition.

Deep Learning Applications: Speech

- ConvNet can also be applied to speech recognition.
- Use spectrogram and treat it like a 2D image.
- SOTA: end-to-end attention-based RNN (w/ LSTM, GRU, ...)

Deep Learning Applications: NLP

- Based on encoding/decoding and attention.
Deep Learning Applications: NLP

- Google’s LSTM-based machine translation.

Deep Learning for NLP: Transformers

- Multihead Self-attention Scaled Dot-Product Attention Transformer

- Highly parallelizable, Reduces serial computation
- Multi-head self-attention + position-encoding/position-wise FFW
- Organized over Query, Key, Value (Q,K,V)

https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aecc9f50d09

Deep Learning for NLP: Transformers & BERT

- Transformer-based NLP led to big leap in performance.

https://medium.com/synapse-dev/understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db

Deep Learning for NLP: Transformers & BERT

- BERT, based on Transformer: Powerful new approach for NLP

from Devlin et al. 2018

GLUE scores evolution over 2018-2019

- Single genetic models
- 2018 Task-specific-SOTA
- Human performance

[Graph showing GLUE scores]

- Transformer-based NLP led to big leap in performance.

https://medium.com/synapse-dev/understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db

53

54

55

56
Limitations of Deep Learning

- Requires massive amounts of (labeled) data.
- Long training time. Large trained models.
- Catastrophic forgetting.
- Designing good model is done mostly manually.
- Vulnerable to adversarial inputs.
- Hard to explain how it works / what it learned.

Overcoming Limitations of DL

Pretty much well known problems, and solutions emerging.

- Data: Active learning, Core sets, data augmentation, etc.
- Computing time: Train with reduced data. Compact models.
- Large trained models: Compression, distillation
- Catastrophic forgetting: Various approaches, not perfect yet.
- Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.
- Adversarial inputs: Adversarial training, defensive distillation, ...
- Explainability: DARPA XAI effort - explanation generation, Bayesian program induction, semantic associations, etc.

Advanced/Fundamental Issues in Deep Learning

- Reasoning, Common-sense reasoning
- Unsupervised, self-supervised learning
- Human-like learning
- Meaning/semantic-level processing
- Problem posing, Coping with new tasks
- Tool construction and tool use

Summary

- Deep convolutional networks: High computational demand, over the board great performance.
- Deep recurrent neural networks: sequence learning. LSTM is a powerful mechanism.
- Diverse applications. Top performance.
- Lots of practical and fundamental limits
- Flood of deep learning tools available.