Brief Introduction to Machine Learning

• Yoonsuck Choe
 Professor
 TAMU CSE

What Is Machine Learning?

• A subfield of AI that is rapidly growing in importance.
• Performance of a system is improved based on learning experience.
• Learning from data.

Why Machine Learning?

• Abundance of data: the data deluge.
 – Scientific instruments.
 – Data acquisition devices.
 – Internet and the web.
 – All sectors of human society producing and digitizing data (e.g., your cell phone).
• Not enough human expertise or human power to make sense of such huge amounts of data.

Machine Learning in the News

IBM’s Watson
Google DeepMind’s AlphaGo

• IBM’s Watson beats human champions: Jeopardy (game show)
• Google detects cats from YouTube videos.
• Google Glass app recognizes people it sees.
• Legal, medical, financial applications.
• Google DeepMind: Atari 2600 game playing, AlphaGo, AlphaStar
What Does It Take to do ML?

A lot of math (but not too deep):

- Linear algebra
- Calculus
- Probability and statistics
- Differential geometry
- Numerical methods

Types of Machine Learning

1. Supervised learning
 - Input-Target pairs
 - \{⟨\vec{x}_i, \vec{t}_i⟩|i = 1, 2, ..., n\}

2. Unsupervised learning
 - A bunch of inputs (unlabeled)
 - \{\vec{x}_i|i = 1, 2, ..., n\}

3. Reinforcement learning
 - state_1 \rightarrow action_1 \rightarrow state_2 \rightarrow action_2 \rightarrow state\ldots, reward
 - \(s_{t+1} = \delta(s_t, a_t), r_{t+1} = \rho(s_t, a_t)\)

Example Data

- Left: supervised
- Right: unsupervised
- Typically very high dimensional (10,000, 1 million [or more]).

High-dimensional Data

- Images: these are 2D images, but ...
- These are \(50 \times 50 = 2,500\)-dimensional vectors.
 - Each such image is a single point in 2,500-dimensional space.
Supervised Learning

- Regression: approximating \(y = f(x) \)
- Classification: face recognition, hand-written character recognition, credit risk assessment, etc.
- Techniques:
 - Neural networks
 - Decision tree learning
 - Support vector machines
 - Radial basis functions
 - Naive Bayes learning
 - k-nearest neighbor

Supervised Learning Issues

- How well will it do on training inputs?
- How well will it do on novel inputs?
 - Generalization.
- How many samples needed for sufficient performance and generalization?
 - Sample complexity
 - Curse of dimensionality
 - Computational learning theory
- Catastrophic forgetting (online learning hard).

Addendum: Curse of Dimensionality

- Exponentially many points needed to achieve same density of training samples.

From: Yoshua Bengio’s page
Unsupervised Learning

Clustering, feature extraction, blind source separation, dimensionality reduction, etc.

- Principal Component Analysis (PCA)
- Self-Organizing Maps (SOM)
- Independent Component Analysis (ICA)
- Multi-Dimensional Scaling (MDS)
- ISOMAP, Locally Linear Embedding (LLE)
- t-distr. Stochastic Neighbor Embedding (t-SNE)

Unsupervised Learning Issues

- Discovering structure.
- Discovering features.
- Removing redundancy.
- How many clusters?
- What distance measures to use?

Reinforcement Learning
Reinforcement Learning

- Very different from supervised and unsupervised learning.
- Multi agent control, robot control, game playing, scheduling, etc.
- Techniques:
 - Value function-based: Q-learning, Temporal difference (TD) learning
 - Direct policy search: Neuroevolution, genetic algorithms.

Reinforcement Learning Issues

- Discrete states and actions was a norm.
- Scalability an issue.
- Certain assumptions: state-action pair visited infinitely often.
- Online learning, safety, transfer, imitation, etc.
- Deep reinforcement learning disrupted a lot of the traditional assumptions.

Summary

- Machine learning is a rapidly developing field with great promise:
 - Big data
 - Deep neural networks
 - Fast computing: GPGPU, cloud, etc.
- Three types of ML:
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- Need to look beyond ML:
 - ML good at solving problems, but not posing problems (Choe and Mann 2012).

Wrap Up