Introduction to Robot Motion Planning

Robotics meet Computer Science
Example

A robot arm is to build an assembly from a set of parts.

Tasks for the robot:

• Grasping: position gripper on object
design a path to this position

• Transferring: determine geometry path for arm
avoid obstacles + clearance

• Positioning
Information required

- Knowledge of spatial arrangement of workspace. E.g., location of obstacles

- Full knowledge → full motion planning

- Partial knowledge → combine planning and execution

motion planning = collection of problems
Basic Problem

A simplified version of the problem assumes:

- Robot is the only moving object in the workspace
- No dynamics, no temporal issues
- Only non-contact motions

$MP = \text{pure "geometrical" problem}$
Components of BMPP

- **A**: single rigid object - the robot - moving in Euclidean space W (the wkspace).

 $$W = \mathbb{R}^N, \; N=2,3$$

- **B_i, i=1,...,q.** Rigid objects in W. The obstacles
Assume

- Geometry of A and B_i is perfectly known
- Location of B_i is known
- No kinematic constraints on A: a “free flying” object
Components of BMPP (cont.)

• The Problem:
 – Given an initial position and orientation PO_{init}
 – Given a goal position and orientation PO_{goal}
 – Generate: continuous path t from PO_{init} to PO_{goal}

• t is a continuous sequence of Pos’
Configuration Space Idea

1. represent robot as point in space
2. map obstacles into this space
3. transform problem from planning object motion to planning point motion
Configuration Space (cont.)

W: Euclidean space in which motion occurs

A at a given position is a compact in W. Attach F_A

B_i closed subset of W.

F_W is a frame fixed in W
Def: configuration of an object

Position of every point of the object w.r.t. F_W

Def: Configuration q of A

Position T and orientation O of F_A w.r.t. F_W

Def: configuration space of A

Is the space T of all configurations of A

- $A(q)$: subset of W occupied by A at q
- $a(q)$: is a point in $A(q)$
Information Required

• Example: T: N-dimensional vector

O: NxN rotation matrix

• In this case, $q = (T,O)$, a subset of $\mathbb{R}^{N(N+1)}$

• Note that C is locally like \mathbb{R}^3 or \mathbb{R}^6.

Notice: no global correspondence
Mathematic Notion of Path

- Need a notion of continuity
- Define a distance function $d : C \times C \rightarrow R^+$
 - Example: $d(q, q') = \max_{a \in A} \|a(q) - a(q')\|_1$
Notion of Path (cont.)

- **Def:** A path of A from q_{init} to q_{goal} is a continuous map $t: [0,1] \rightarrow C$

 \[t(0) = q_{\text{init}} \text{ and } t(1) = q_{\text{goal}} \]

- **Property:** t is continuous if for each s_o in $(0,1)$,
 \[\lim_{s \rightarrow s_o} d(s, s_o) = 0 \] when $s \rightarrow s_o$
Obstacles in Configuration Space

- Obstacle B_i maps in C to a region

$$CB_i = \{ q \in C, \text{ s.t. } A(q) \text{ and } B_i \text{ are not disjoint} \}$$

- Example: “round” robot with no preferred orientation
Obstacles in C- Space (cont.)

- Obstacles in C are called C-obstacles.
- C-obstacle region: Union of all Cb_i
- Free space: $C_{\text{free}} = C - U Cb_i$
- q is a free configuration if q belongs to C_{free}
- Def: Free Path.

Is a path between q_{init} and q_{goal}, $t: [0,1] \rightarrow C_{\text{free}}$
Obstacles in C (cont.)

- **Def:** Connected Component

 q_1, q_2 belong to the same connected component of C_{free} iff they are connected by a free path.

Objective of Motion Planning:

generate a free path between 2 configurations if one exists or report that no free path exists.
Examples of C-Obstacles

- Translational Case:
 1. A is a single point -> no orientation
 \[W = \mathbb{R}^N = C \]
 2. A is a disk or dimensioned object allow to translate freely but without rotation.

C-Obstacles: obstacles “grown” by the shape of A
Planning Approaches

• 3 approaches: road maps, cell decomposition and potential field

1- Roadmap

Captures connectivity of C_{free} in a network of 1-D curves called “the roadmaps.”

Once a roadmap is constructed: use a standard path.

Roadmap Construction Methods: 1) Visibility Graph, 2) Voronoi Diagram, 3) Freeway Net and 4) Silhouette.
Visibility graph in 2D CS. Nodes: initial and final config + vertices of C-obstacles.
Cell Decomposition

- Decompose the free space into simple regions called cells
- Construct a non-directed graph representing adjacencies: the *connectivity graph*
- Search for a path forming a “channel”
- Two variations:
 - Exact: union of cells is exactly the free space
 - Approximate: union included in the free space
Cell Decomposition: Example

q_{init}

q_{goal}

init

goal
Extensions of the Basic Problem

- Multiple moving objects
 - Multiple obstacles
 - Multiple Robots
 - Articulated Robots

- Kinematic Constraints

- Uncertainty

- Movable objects
Computational Complexity

- Instances may differ in “size”: dimension of C-space and # of obstacles

- **Result 1**: planning a free path for a robot made of an arbitrary # of polyhedral bodies connected by joints, among a finite set of polyhedral obstacles is a PSPACE-hard problem

- **Result 2**: A free path in a C-space of fixed dimension m, when the free space is defined by n polynomials of max degree d, can be computed exponentially in m and polynomial in n and d