
Assignment 4: Compilation & Simulation of Applications for ARM
Cortex-A9 MP AXI systems using Carbon SoCDesigner & ARM DS-5

Aalap Tripathy, Rabi Mahapatra

This assignment is to introduce you to the ARM Development Studio 5 (DS-5), ARM
Compiler tool-chain [1], understand how to create, compile, run and characterize an
application with it on Carbon’s SoCDesigner.

In previous lab assignments, you used SoCDesigner for fast simulation of SoC’s with
processing cores, several peripherals, memories etc. The transaction-based
components and interfaces enable much higher simulation speeds than traditional
RTL while maintaining cycle-accuracy. Note that we used a precompiled ARM
Executable File (AXF), sort.axf and sort_interactive.axf provided as part of the A9
Bare-metal performance analysis kit (CPAK) to run the system.

In this lab, you will use ARM DS-5 to understand what was necessary to generate an
appropriate .axf file for this system. The lab will use the same A9-AXI reference SoC
hardware (components) for ease of understanding. The guided section of this lab
will begin with a simple “Hello World” and then transition to a simple Vector
multiplication application. The assignments will have you make changes to the sort
application you have used earlier, examine the effect of changes in source code on
the system. At the end of this assignment you should be able to deploy an arbitrary
application on the same reference system or any other SoC you create in
SoCDesigner.

The key objectives of this assignment can be summarized as:

1. Understand the ecosystem of files necessary to run a bare-metal application
on a processor core – such as .c, .s, .o, .map, .scat, .axf.

2. How to compile a C/C++ program for simulation on an ARM Cortex A9
processor using ARM-DS 5.

3. How to simulate the program with SoC Designer Simulator.
4. How to profile your software code on the Cortex A9 processor using SoC

Designer.
5. How to observe bus transactions in your system and correlate them to

source code.

The procedure for accessing the Carbon tools (SoC Designer, SoC Simulator)
remains the same as earlier. You may also like to refer to “Using-Socd-basic-
workbook.pdf” again in /opt/carbon_tutorials for the SoC Designer portions.

What to Turn in for Part (b):

Execute the steps in this tutorial and answer the questions in-line with the text.
More mastery questions are included at the end of guided section and should be
part of your submission.

Step 1: Setting up PATH to ARM Compiler tool-chain

ARM DS-5 is installed in /opt/DS-5 on cse - codesign.tamu.edu . Source the

script in /opt/source_arm.sh to add the ARM tools into your PATH. ARM DS-5
includes copies of gcc which may behave differently from those installed by default
in the system (interfere with Carbon Model Studio toolchain). Therefore we modify
the PATH environment variable by doing this locally within a console rather than
globally on cse - codesign.tamu.edu . This places several tools in /opt/DS-5/bin

in the console PATH.

$source /opt/source_arm.sh

Step 2: Starting DS -5

You can now start ARM DS-5 (Eclipse) GUI by:
$eclipse &

Step 3: Create/Import Project in DS-5

To ease understanding, we have provided a simplified reference application in
/opt/cpak/mult_port. It is a derivative of the sort application in: /opt/cpak/A9-MP-
AXI-Demo-CMS5.14.0-V2012.11.09-SOCD7.11.0/Applications/sort
Please copy this to your home directory before you continue with the rest of this
tutorial.

Import this project into the Eclipse environment: File Ą Import Ą C/C++ Ą
Existing Code as Makefile project
Choose your code location (somewhere in your home directory), and choose the
ARM Compiler tool-chain

Step 4: Examining sample application source code

The sample bare-metal application is derived from the Sort reference application
(/opt/cpak/A9-MP-AXI-Demo-CMS5.14.0-V2012.11.09-
SOCD7.11.0/Applications/sort). The Table below lists the files and their purpose:

Name of File Type
of File

Purpose of File How is it handled

cpuUtils.s .s Assembler source for handling
multiple cores on the Cortex A9.
Defines functions isCPUdone(),
getCPUNum(), setCPUDone(). May
not need to modify

Compiled with the
ARM Assembler
(armasm). Refer to
Makefile to
understand the
specific flags used.
To learn more or
make changes
refer to the ARM
Cortex A9
Technical
Reference Manual
on ARM Infocenter
(or
/opt/documents/
arm_specs/
DDI0388F_cortex_
a9
_r2p2_trm.pdf)

GlobalData.s Assembler source defining Global
data entry point.

Init.s Assembler source for code
initialization. May not need to
modify

InitCache.s Assembler source to enable
Instruction & Data caches, branch
prediction logic. May not need to
modify

Vectors_mp.s Assembler source for the various
handlers – interrupt, prefetch, reset,
abort. May not need to modify

MMU_L1_TT.s Assembler source for Page Table.
May need to modify depending on
system.

Intgrt_struct.h .c, .h Defines the base addresses for
Cortex A9 Core and memory-
mapped peripherals such as Timer,
Real-Time-Clock, Interrupt
Controller, UART – including their
internal registers.

Compiled with
ARM C Compiler
(armcc). Refer to
Makefile to
understand the
specific flags used
to compile it
properly
(especially for the
processor core –
No Neon, no FPU
etc.).

intgrt.h

mult_port.c C source files containing
application code. Should have
main() function and application
logic.

sample_data.c

retarget.c Re-implements some functions
whose C library implementations
rely on semihosting – stdio, clock(),
exit(), errors. Is called before
application’s main(), performs
additional initialization, retargets
I/O calls to direct read/write to
console, exception handling. Since

Name of File Type
of File

Purpose of File How is it handled

we are running application in a
simulation environment, we must
reimplement or retarget them. The
I/O functionality is actually
implemented in serial.c

serial.c Defines functions that initialize
serial port (baud rate, word length),
handless sending and receiving of
individual characters. Accomplishes
it by setting UART register values.

uart.c Maps register offsets for the UART
(used for console display) uart.h

Mult_port.scat .scat Defines the base addresses, size of
stack and heap for the individual
processor cores of the Cortex A9
(the example uses a single core for
simplicity). It names all execution
regions in an image and provides
their load and execution addresses

To learn more
please see Ref [3]

Makefile You will need to modify this file
depending on your application
source code.

ARM Linker
(armlink)
produces the .axf
file from all the .o
& .scat files

The mult_port.c file prints a rudimentary “Hello World”, proceeds
to multiply a sampdata[] array with a coefficient, stores it in in
outdata array and prints the result. The source data is defined as
an integer array in sample_data.c file. Several other lines and
functions have been commented out but will become relevant
when you attempt the assignment questions.

The Interrupt handler needs to be declared as an empty function
even if it is not used. Examine how it is declared (lines 51-60
together with lines 119-131 of mult_port.c). It is essential to
declare this, even if you may no need any peripherals.

Step 5: Building the Application. Understand the purpose of the output files
created.

Project Build is accomplished with Project Ą Build Project from within the DS-5
environment. You can do the equivalent operation from the command-line with
$make all. This will compile and assemble the object files, link them together to
produce the .axf file as defined in your Makefile.
(Assuming you have navigated to the application project folder in your home
directory, you will see)
$make all

The key file is the ARM Executable file (.axf), which we will load into the SoC
Designer Simulator as in Assignment 1. However the sample Makefile also produces
other files of type: .img, .disass, .map. These files together with their purpose are
listed below.

Name of Output

File
Type

of File
Purpose of File How is it created?

cpuUtils.o .o Object file from ASM or C
code.

Produced by ARM
Compiler armcc and
ARM Assembler
armasm.

GlobalData.o .o
Init.o .o
InitCache.o .o
MMU_L1_TT.o .o
Mult_port.o .o
Sample_data.o .o
Serial.o .o
Vectors_mp.o .o

armcc - c - g - O3 -- cpu=Cortex - A9.no_neon.no_vfp -- asm -- interleave -- fpu=None - o

mult_port.o mult_port.c

armcc - c - g - O3 -- cpu=Cortex - A9.no_neon.no_vfp -- asm -- interleave -- fpu=None - o

sample_data.o sample_data.c

armcc - c - g - O3 -- cpu=Cortex - A9.no_neon.no_vfp -- asm -- interleave -- fpu=None - o

retarget.o retarget.c

armasm - g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC

SETL {FALSE}" - o Init.o Init.s

armasm - g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC

SETL {FALSE}" - o InitCache.o InitCache.s

armasm - g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC

SETL {FALSE}" - o MMU_L1_TT.o MMU_L1_TT.s

armasm - g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC

SETL {FALSE}" - o Vectors_mp.o Vectors_mp.s

armcc - c - g - O3 -- cpu=Cortex - A9.no_neon.no_vfp -- asm -- interleave -- fpu=None - o

serial.o serial.c

armasm - g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC

SETL {FALSE}" - o cpuUtils.o cpuUtils.s

armasm - g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC

SETL {FALSE}" - o GlobalData.o GlobalData.s

armlink -- entry 0x0 -- map -- list mult_port.axf.map -- scatter mult_port.scat - o

mult_port.axf mult_port.o sample_data.o retarget.o Init.o InitCache.o MMU_L1_TT.o

Vectors_mp.o serial.o cpuUtils.o GlobalData.o

fromelf - c -- output mult_port.disass mult_port.axf

fromelf -- bin -- output mult_port.img mult_port.axf

Name of Output
File

Type
of File

Purpose of File How is it created?

Mult_port.axf .axf ARM Executable file,
combines the contents of
several object files.

Produced by the ARM
linker (armlink)

Mult_port.axf.map .map Defines the memory map of
the image

Mult_port.axf.disass .disass Shows the program
disassembly

Produced by ARM
image converter
(fromelf). Mult_port.axf.img .img .img files help protect IP –

consist of object files in an
archive, can be directly
loaded into memory

Several .txt files .txt

For example, the axf.map file (Mult_port.axf.map) shows the memory map of the
image. It defines where the various assembler created & runtime library object files
are loaded. For example: mult_port.o has been loaded at 0x00000184 in the Read-
Only (ROM_EXEC) & the sample_data.o object at 0x00200004 in the PRIVATE_DATA
region. Sample_data consists of 256 integers (= 256 bytes x 4 = 1KB = 0x400). You
can even observe the 4 bytes of data (int coeff=5) in mult_port.o at Base Address
0x00200000.

Q1: What do you think 0x00200414 (Size =0x400) in Mult_port.axf.map
corresponds to? (Hint: Make sure you have read mult_port.c completely) (1 point)

Step 6: Loading the ARM Executable file into the SoCDesigner environment.
Profiling at run-time, examining interface waveforms/traces

Now that we have created a valid ARM executable file (mult_port.axf), we will load it
into our SoC using SoCDesigner Simulator.
6.1 Running the AXF File in SoC Designer Simulator
Open SoC Designer Canvas with $sdcanvas & (or SoC Designer simulator with
$sdsim &) and load the A9 Bare-metal example SoC (or from your previous
assignments). If you are in SoC Designer, choose Simulate Ą Simulate System and
load the newly created mult_port.axf file. Screenshots below to assist you.

Now that the simulation is configured to execute the mult_port.axf file, you can now
run the application. The SemiHost Console window will show something like this:

These results are interesting because we have enabled the SemiHost to route our
printf() commands to the console window (uart.c, serial.c). Typically that need not
be the case so we need to become adept using the profiling and tracing features
available within SoCDesigner to our advantage.

6.2 Using Software Profiling on SoC Designer Simulator

In the SoC Designer Simulator window, right click on the core, select Profiling Ą
Software Ą Core.core0 Ą Enable and then select display. This will open up an
empty profiling window. (You can do the same thing from the Profile Manager
toolbar button as well)

Now run the simulation as usual while keeping this window open. Stop at an
intermediate point and you can see the function call hierarchy until that time. (PS –
It’s not as instantaneous as we would hope for it to be, watch patiently).

Q2: On which cycle exactly is the main() function in mult_port.c entered? (1 point)
Q3: On which cycle exactly is the main() function in mult_port.c exited? (1 point)
(Please include screenshots)

Once you have entered the main() function, you should step through the code cycle-
by-cycle to see exactly what is happening from the software point-of-view.

Q4: Discuss your observations when you step through the code cycle-by-cycle
within main()? (Please include screenshots to substantiate observations you make)
(1 point)

6.3 Using the Waveform Tracing feature on SoCDesigner Simulator

Function profiling is a useful feature when examining application behavior on a
prototype SoC. However, it is often necessary to observe interface signals as a wave
during run-time (especially when verifying the functionality of custom IP cores vis-
à-vis source code). You performed parts of the following in the “Using SoC Designer
Workbook”, this section will give you an opportunity to explore it again and
correlate it with source code.

Restart your simulation (Control Ą Restart simulation). Click on an interface (wire
or port) that you would like to observe waveforms for and select Enable/Disable
Tracing. This opens a Tracer properties window. The screenshots above are for the
AXI_m0 (instruction-fetch) port on the Cortex-A9 core. The top section of the tracer
window shows the available channels and the bottom section describes their
signals.

Please read through the AMBA AXI Protocol specifications (at least Chapter 2 for
basic signal descriptions) in /opt/documents/arm_specs/AMBAaxi.pdf to get a full
understanding of what you are observing.

The Tracer properties window shows the four AMBA AXI channels and their
associated signals. For simplicity, we will observe the Address-Write (AW) and
Address Read Channels (AR) channels.

The following Table and screenshots show the signals we enable in Tracer
properties for the AXI_M0 interface:

Channel Signals
AW – Write Address Channel AWADDR – Write Address

AWLEN – Burst Length
AWSIZE – Burst Size
AWBURST – Burst Type

W – Write data Channel None
B – Write Response Channel None
AR – Read Address Channel ARADDR – Read Address

ARLEN – Burst Length
AR Size – Burst size
ARBURST – Burst

Once you have set up the traces, click on “Wave” button on the toolbar. You should
see something like this:

Now run the simulation. You can see now see the bus-level signals at each port when
your application is running in real-time. Please use the Zoom In/Zoom Out buttons
on the toolbar and stop the simulation as necessary.

(Same waveform at end of simulation, zoomed out view)

Q5: Repeat the above exercise for the AXI interface between Core::AXI_m1 (Data
port) Ą MxAXIv2::AXI_s01. Discuss your observations. What is happening? (1
point)
Q6: Repeat the above exercise for the AXI interface between MXAXIv2:: AXI_m00 Ą
RAM::AXI_s interface/wire. Discuss your observations. (1 point)

Additional Questions for Turn-in: These questions correspond to the sort
application, which you have performed in the previous tutorials/assignments.
Q7: Import the Sort application into Eclipse (Please copy it from /opt/cpak/A9-MP-
AXI-Demo-CMS5.14.0-V2012.11.09-SOCD7.11.0/Applications/sort/ into your home
directory or DS-5 Workspace first). Make a note of the differences between the
source code in the sample application in the tutorial and the benchmark sort
application.

a) Disable the time-slicing implementation between the insertion and shell sort
algorithms controlled by the timer peripheral triggering IRQ’s periodically.

b) Now repurpose the code to run shell sort (sort0) followed by insertion sort
(sort1) i.e. sequentially. Include the routine to check_sort() for both after
they have run.

c) Execute this code and report the cycle time you obtain. Also submit a
screenshot of the console output.

Q8: Ref. Sec. 6.2: Perform software profiling on your new sort application. What are
the top 5 functions that the application spends most of its time executing. What
percentage of execution time is spent in running sort1_step v/s sort0_step?
Experiment with several input sizes (10-500); present your results in the form of a
table. You could disable the printf() statements when doing this to better
understand the results. Which sort implementation is more efficient? (2 points)
Q9: Ref. Sec. 6.3: Trace the waveform for the APB interface between
cm_bridge_axi_apb::apb00 Ą cm_timer_apb[0] :: apb when running the original
benchmark sort application (not the modified one from Q7, Q8). Discuss your
observations. Now also add a waveform trace on the TIMINT1 i.e. between
cm_timer_apb[0]::TIMINT1 Ą intvector[0]::intNum0. Run the simulation and
correlate these signals. Discuss your observations. At which cycles is TIMINT1
triggered? Can you correlate with your observations during the Cosimulation
exercise? Please include screenshots to substantiate your answer. (2 points)
Q10: Ref. Sec. 6.3: Replace the timer with the timer you designed in Assignment 4.
Repeat the previous question with this change. Have you implemented your timer
correctly? If you detect an error, please make corrections here. If your
implementation was correct, discuss how you verify it from the waveform view. (2
points)

Correlation with Class Project:

After you have completed the guided section of the tutorial and attempted the
assignments, you should be able to compile code for your class project’s software
modules.

Carbon SoC Designer, ModelStudio and ARM DS-5 are fully featured tools. Please
consult their documentation folders in their respective installation directories (i.e.
/opt/SoCDesigner, /opt/carbon and /opt/DS-5). Also consult the publicly available
documentation from the ARM Infocenter on the web to learn more.

References:

1. ARM Development Studio 5 (DS-5) :
http://www.arm.com/products/tools/software-tools/ds-5/index.php

2. ARM Cortex A9 Technical Reference Manual (Revision: r2p2) :
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/CI
AECBEB.html

3. ARM Compiler Tool-chain (Version 5.02) :
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/C
HDDDBGE.html

Notes:

1. It is not absolutely necessary to use the ARM DS-5 GUI (calling eclipse) for
this assignment, it is definitely convenient. You are welcome to use the
command line once the tool-chain has been setup in your PATH in Step 1 to
generate the required .axf files. You can use your favorite text editor (vim,
emacs Notepad++ etc.)

2. You can open the documentation PDF files directly from your terminal using:
$evince <filename.pdf> & (No need to copy everything into your home
folder)

3. Parts of the documentation are as HTML files, you can open Firefox web-
browser directly from the terminal to navigate using:
$firefox <filename.html> &

Credits: Parts of this tutorial have been adapted from ECE 747 DSP Architecture, SoC
Tutorial #1, Spring 2007 at NC State University.

Contact: Aalap Tripathy (aalap@cse.tamu.edu) for tool access related problems
only.

http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/CIAECBEB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/CIAECBEB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDDDBGE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDDDBGE.html
mailto:aalap@cse.tamu.edu

