Assignment 4: Compilation & Simulation of Applications for ARM
Cortex-A9 MP AXI systems using Carbon SoCDesigner & ARM DS-5
Aalap Tripathy, Rabi Mahapatra

This assignment is to introduce you to the ARM Development Studio 5 (DS-5), ARM
Compiler tool-chain [1], understand how to create, compile, run and characterize an
application with it on Carbon’

In previous lab assignments, you used SoCDesignerf or f ast si mwithat i

processing cores, several peripherals, memories etc. The transaction-based
components and interfaces enable much higher simulation speeds than traditional
RTL while maintaining cycle-accuracy. Note that we used a precompiled ARM
Executable File (AXF), sort.axf and sort_interactive.axf provided as part of the A9
Bare-metal performance analysis kit (CPAK) to run the system.

In this lab, you will use ARM DS-5 to understand what was necessary to generate an
appropriate .axf file for this system. The lab will use the same A9-AXI reference SoC
hardware (components) for ease of understanding. The guided section of this lab

wi || begin with a simpl e *“ Healsimple WAtwor | d”

multiplication application. The assignments will have you make changes to the sort
application you have used earlier, examine the effect of changes in source code on
the system. At the end of this assignment you should be able to deploy an arbitrary
application on the same reference system or any other SoC you create in
SoCDesigner.

The key objectives of this assignment can be summarized as:

1. Understand the ecosystem of files necessary to run a bare-metal application
on a processor core —such as ., .s, .0, .map, .scat, .axf.

2. How to compile a C/C++ program for simulation on an ARM Cortex A9
processor using ARM-DS 5.

3. How to simulate the program with SoC Designer Simulator.

4. How to profile your software code on the Cortex A9 processor using SoC
Designer.

5. How to observe bus transactions in your system and correlate them to
source code.

The procedure for accessing the Carbon tools (SoC Designer, SoC Simulator)

remains the same as earlier. You ma y al so | i ke tSocd-basg-f er

wo r k b o oagainpng/dpt/carbon_tutorials for the SoC Designer portions.
What to Turn in for Part (b):
Execute the steps in this tutorial and answer the questions in-line with the text.

More mastery questions are included at the end of guided section and should be
part of your submission.

s SoCDesi

gner .

on (O

and

t o

Step 1: Setting up PATH to ARM Compiler tool-chain

ARM DS-5 is installed in /opt/DS-5 on cse - codesign.tamu.edu . Source the

script in /opt/source_arm.sh to add the ARM tools into your PATH. ARM DS-5
includes copies of gcc which may behave differently from those installed by default
in the system (interfere with Carbon Model Studio toolchain). Therefore we modify
the PATH environment variable by doing this locally within a console rather than
globally on cse - codesign.tamu.edu . This places several tools in /opt/DS-5/bin
in the console PATH.

$source /opt/source_arm.sh
Step 2: Starting DS -5

You can now start ARM DS-5 (Eclipse) GUI by:
$eclipse &

Step 3: Create/Import Project in DS-5

To ease understanding, we have provided a simplified reference application in
/opt/cpak/mult_port. It is a derivative of the sort application in: /opt/cpak/A9-MP-
AXI-Demo-CMS5.14.0-V2012.11.09-SOCD7.11.0/Applications/sort

Please copy this to your home directory before you continue with the rest of this
tutorial.

Import this project into the Eclipse environment: File A Import A C/C++ A
Existing Code as Makefile project

Choose your code location (somewhere in your home directory), and choose the
ARM Compiler tool-chain

X/ Import 8 00 N\ Import Existing Code

Select Import Existing Code
N\

Creates a new Makeflle project In a directory contalning existing code E A EI Create a new Makeflle project from existing cade in that same directory

Project Name
Select an import source:

| mult_port

‘ %)

Existing Code Location
b = General

¥ = CICH

Languages
C/C++ Executabl
= xecutable P

| mome/aatap/mutt_port Browse

¥ C/CH Project Settings

— " Toolchain for Indexer Settings:
@ Existing Code as Makefile Project
= <none>
b= ovs

ARM Compiler
b = Install

Cygwin GCC

b (= Remote Systems
b (= RunDebug

DS-5 GCC

Linux GEC

P (= Scatter File Editor MacOsSX GCC

b (= Target Configuration Editor = MinGW GCC
Solaris GCC

Step 4: Examining sample application source code

The sample bare-metal application is derived from the Sort reference application
(/opt/cpak/A9-MP-AXI-Demo-CMS5.14.0-V2012.11.09-
SOCD7.11.0/Applications/sort). The Table below lists the files and their purpose:

Name of File

Type
of File

Purpose of File

How is it handled

cpuUtils.s

GlobalData.s

Init.s

InitCache.s

Vectors_mp.s

MMU_L1_TT.s

.S

Assembler source for handling
multiple cores on the Cortex A9.
Defines functions isCPUdone(),
getCPUNum(), setCPUDone(). May
not need to modify

Assembler source defining Global
data entry point.

Assembler source for code
initialization. May not need to
modify

Assembler source to enable
Instruction & Data caches, branch
prediction logic. May not need to
modify

Assembler source for the various
handlers — interrupt, prefetch, reset,
abort. May not need to modify

Assembler source for Page Table.
May need to modify depending on
system.

Compiled with the
ARM Assembler
(armasm). Refer to
Makefile to
understand the
specific flags used.
To learn more or
make changes
refer to the ARM
Cortex A9
Technical
Reference Manual
on ARM Infocenter
(or
/opt/documents/
arm_specs/
DDI0388F_cortex_
a9

_r2p2_trm.pdf)

Intgrt_struct.h

intgrt.h

mult_port.c

sample_data.c

retarget.c

.c,.h

Defines the base addresses for
Cortex A9 Core and memory-
mapped peripherals such as Timer,
Real-Time-Clock, Interrupt
Controller, UART - including their
internal registers.

C source files containing
application code. Should have
main() function and application
logic.

Re-implements some functions
whose C library implementations
rely on semihosting — stdio, clock(),

exit(), errors. Is called before
application’ s m
additional initialization, retargets

[/O calls to direct read/write to
console, exception handling. Since

Compiled with
ARM C Compiler
(armcc). Refer to
Makefile to
understand the
specific flags used
to compile it
properly
(especially for the
processor core —
No Neon, no FPU
etc.).

Name of File

Type
of File

Purpose of File

How is it handled

serial.c

uart.c

uart.h

we are running application in a
simulation environment, we must
reimplement or retarget them. The
[/O functionality is actually
implemented in serial.c

Defines functions that initialize
serial port (baud rate, word length),
handless sending and receiving of
individual characters. Accomplishes
it by setting UART register values.

Maps register offsets for the UART
(used for console display)

Mult_port.scat

.scat

Defines the base addresses, size of
stack and heap for the individual
processor cores of the Cortex A9
(the example uses a single core for
simplicity). It names all execution
regions in an image and provides
their load and execution addresses

To learn more
please see Ref [3]

Makefile

You will need to modify this file
depending on your application
source code.

ARM
(armlink)
produces the .axf
file from all the .o
& .scat files

Linker

The

mult_port.c file
to multiply a sampdata[] array with a coefficient, stores it in in
outdata array and prints the result. The source data is defined as
an integer array in sample_data.c file. Several other lines and
functions have been commented out but will become relevant

prints

when you attempt the assignment questions.

The Interrupt handler needs to be declared as an empty function
even if it is not used. Examine how it is declared (lines 51-60
together with lines 119-131 of mult _port.c). It is essential to

declare this, even if you may no need any peripherals.

a = 25 mult_port
P EIncludes

b (8] cpuutils.s

P[5 GlobalData s

b5 Init.s

b [§) InitCache s

P [h] intgrt_struct.h

b [K] intgrt.h

b O[S MMU LT TTs

b lel mult_port.c

b gl retarget.c

b | sample_data.c

b |l serial.c

blg uartc

b [varth

b [8] vectors_mp.s
& Makefile
e mult_port. axf
|&] mult_port scat

Step 5: Building the Application. Understand the purpose of the output files

created.

ntary

Project Build is accomplished with Project A Build Project from within the DS-5
environment. You can do the equivalent operation from the command-line with
$make all. This will compile and assemble the object files, link them together to
produce the .axf file as defined in your Makefile.

(Assuming you have navigated to the application project folder in your home
directory, you will see)

$make all
armecc -c¢ -g -03 -- cpu=Cortex - A9.no_neon.no_vfp -- asm -- interleave -- fpu=None -0
mult_port.o mult_port.c
armecc -c¢ -g -03 -- cpu=Cortex - A9.no_neon.no_vfp -- asm -- interleave -- fpu=None -0
sample_data.o sample_data.c
armec -c¢ -g -03 -- cpu=Cortex - A9.no_neon.no_vfp -- asm -- interleave -- fpu=None -0
retarget.o retarget.c
armasm -g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC
SETL {FALSE}" - o Init.o Init.s
armasm -g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC
SETL {FALSE}" - o InitCache.o InitCache.s
armasm -g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC
SETL {FALSE}" -oMMU_L1_TT.o MMU_L1_TT.s
armasm -g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC
SETL {FALSE}" - o0 Vectors_mp.o Vectors_mp.s
armecc -c¢ -g -03 -- cpu=Cortex -A9.no_neon.no_vfp -- asm -- interleave -- fpu=None -0
serial.o serial.c
armasm -g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC
SETL {FALSE}" - o cpuUtils.o cpuUtils.s
armasm -g -- cpu=Cortex - A9.no_neon.no_vfp -- pd "HAS_FPU SETL {FALSE}" -- pd "HAS_L2CC
SETL {FALSE}" - o GlobalData.o GlobalData.s
armlink -- entry 0x0 - mg - list mult_port.axf.map -- scatter mult_port.scat -0

mult_port.axf mult_port.o sample_data.o retarget.o Init.o InitCache.o MMU_L1 TT.o
Vectors_mp.o serial.o cpuUtils.o GlobalData.o

fromelf -c -- output mult_port.disass mult_port.axf

fromelf -- bin -- output mult_port.img mult_port.axf

The key file is the ARM Executable file (.axf), which we will load into the SoC
Designer Simulator as in Assignment 1. However the sample Makefile also produces
other files of type: .img, .disass, .map. These files together with their purpose are
listed below.

Name of Output Type Purpose of File How is it created?
File of File

cpuUtils.o .0 Object file from ASM or C | Produced by ARM
GlobalData.o .0 code. Compiler armcc and
Init.o .0 ARM Assembler
InitCache.o .0 armasm.
MMU_L1_TT.o .0

Mult_port.o .0

Sample_data.o .0

Serial.o .0

Vectors_mp.o .0

Name of Qutput | Type Purpose of File How is it created?
File of File

Mult_port.axf axf ARM Executable file, | Produced by the ARM
combines the contents of | linker (armlink)
several object files.

Mult_portaxf.map |.map | Defines the memory map of

the image
Mult_port.axf.disass | .disass | Shows the program | Produced by ARM
disassembly image converter

Mult_port.axf.img img img files help protect IP —| (fromelf).
consist of object files in an
archive, can be directly
loaded into memory

Several .txt files Axt

For example, the axf.map file (Mult_port.axf.map) shows the memory map of the
image. It defines where the various assembler created & runtime library object files
are loaded. For example: mult_port.o has been loaded at 0x00000184 in the Read-
Only (ROM_EXEC) & the sample_data.o object at 0x00200004 in the PRIVATE_DATA
region. Sample_data consists of 256 integers (= 256 bytes x 4 = 1KB = 0x400). You
can even observe the 4 bytes of data (int coeff=5) in mult_port.o at Base Address
0x00200000.

Q1: What do you think 0x00200414 (Size =0x400) in Mult_port.axf.map
corresponds to? (Hint: Make sure you have read mult_port.c completely) (1 point)

Step 6: Loading the ARM Executable file into the SoCDesigner environment.
Profiling at run-time, examining interface waveforms/traces

Now that we have created a valid ARM executable file (mult_port.axf), we will load it
into our SoC using SoCDesigner Simulator.

6.1 Running the AXF File in SoC Designer Simulator

Open SoC Designer Canvas with $sdcanvas & (or SoC Designer simulator with
$sdsim &) and load the A9 Bare-metal example SoC (or from your previous
assignments). If you are in SoC Designer, choose Simulate A Simulate System and
load the newly created mult_port.axf file. Screenshots below to assist you.

X| Carbon SoC Designer Canvas - [Application-all]

File Edit View Insert Object Tools Simulation | Window Help

0O =] i =) & » Simulate System... F5 W =3 A i he he
New Open Save Cut Copy Pas » Si System (DEBUG)... Ctrl+Shift+F5 Map = Comp Port Label | Clock | Signal | Trans | Grid
Z 3 = . ——
I%A Enable HDL Cosimulation
= — HDL Cosimulation i
- [Component Window lE -
(CortexAS_1CPU_32KI_:
kDJZ;‘HhiNuFPuiﬂn‘l Model
mxaxivz (MxaXivz) | i —ilkaggregator
irq im0) s00 axi_mao Pt X00000000- @ AHB_AT_to_AHBv2ms
ok @ s W e (. s L g AHB_AT to_AHBv2msLite
extSanio I _ e e » i =
—|- pos) (e E) [7] All ABus /\Core /\Mem AOther APrimChn
P semhost g i System Configuration Window =
e et HEN Memory Space: | e
Adepler ericae Gl ‘ Component Port | StarlAddr End Addr | Region Nam
u
T
lif brids ahblite_: | { - . i
vic_pi190 (vic pi90) | 7| | (AHBV2LiteToAHBvZSS fg‘ﬁ;n%:ix&uhlhul — EmL e AELEE D o]
a w | e @ ARESEn
oin iore dien P 0 w4 R]
—‘ ein MemMap |Hierarchy | PrimeCell |
| Timer Bridge Parameter Window =
[peectrto Grovecor) 7] fem tmer_api]] - [om brdgo i ap0] om_rosize i 4.3 .. || | | |[Paramieter | Walue | & [Tvpe |
@ @ | Lduin @ s d
obvin o ohin
i i
o T =
Application-all
Ready
%] Carbon SoC Designer Simulator
Eile View Object Control Debug Window Help
= =] L] e hd & o u ¥ Wi " »*
Open Save Close Brkpts Profile Trace MemMap Wave | Bun Stop Step Stepn | Beset | SyncAll
o ||| Zoom %:
0 -
100 <

=] axi_mi Y @i _s00 ai_maa [— il
clk-in @ axi_mi P axi_s01 axi_m01 OXOFFFFFFF
extSemin Py — B ck-in axi_m02 Py
car i
o 7] -
(Car) RAM (PXIvZ_Mem)
B cernibhnst

% Select Application Files

Component
W, Core [CortexA9_1CPU_32kl_32kD_128Tlb_NoFPU_NoJazelle_no

Laxi 643 ... L]

vic_pl180 {V
La .

v Planel o Qalant Cila |

8 00 %/ Select The Application Code axi_s 4

Look in: |cuorojects/Running-Applications/mult_port/ jl - | | il | Proceed ->

= T |
Cimult_port.img R i

B mult_port.axf =

baded.

File name: |mult_port.axf Open

| File type: Application Files (*.axf;* elf) /| cancel|

Read

Now that the simulation is configured to execute the mult_port.axf file, you can now
run the application. The SemiHost Console window will show something like this:

%| Carbon SoC Designer Simulator - Application-all [Application-all]

File View Object Control Debug Window Help

= = L] = bl 141 4 u M P) * S
. Open Save Close | Brkpts Profile Trace MemMap = Wave | Run Stop Step Stepn | Reset | SyncAll ||
a1 | Zoom %:
o 1 100 -~
P hd
i) axi_md axl_300 =i_moo 0-00000000- A
clk-in @ il P awi_s01 a1 = 0x0FFFFFFF
extSemio Py - — P elk-in 1 ai_mioz
carhonsemihosto] | / | -
(Carbon i) RAM (AXIv2_Mem) |—
m Core.core0 - Console Window NI} .-
Hello World reset [t |
outdata[d]=290 clk-in
outdata]1]=465
ouldatalz]=75 2z
outdataf3]=430 - i i
wic_pan (ic outdatad]=250 cm_resize_axi 64 3.. L
= | outdata[3]=145
irg : outdata]B|=440 ARESETh
{C, | outdatal]-35 ezl _m s 4
olk-in autdatafd]=100 i :
outdata[9]=260
outdata[10]=245
outdata[11)=330 | 515 | 1 i
Ed outdata[12]=170 =
outdata[13]=410
% <TOP> outdata[1 4]=365
= outdatal15]=40 =
¥ cycle 96194 cuefo-22
. - i
Cycle 97823 : R
Cycle 99412 :
Cycle 101033 :
101,427 cycles, 14.62 sec, 6,937.55 cycles/sec d
Command >

= Core.corel - ...
Ready

These results are interesting because we have enabled the SemiHost to route our
printf() commands to the console window (uart.c, serial.c). Typically that need not
be the case so we need to become adept using the profiling and tracing features
available within SoCDesigner to our advantage.

6.2 Using Software Profiling on SoC Designer Simulator

In the SoC Designer Simulator window, right click on the core, select Profiling A
Software A Core.core0 A Enable and then select display. This will open up an
empty profiling window. (You can do the same thing from the Profile Manager
toolbar button as well)

X| Carbon SoC Designer Simulator - Application-all [Application-all]

File View Object Control Debug Window Help |

- =] o & m B = i = M Hn L] - St
| Open Save Close Brkpts Profile Trace MemMap Wave Run Stop Step Stepn | Reset | SyncAll ||
naoe | 200m %
DHE ’W:
i B
Core
{CortexA9_1 CPU_32ZKI_ ﬂ
KD_128Tlh_NoFPU_NoJ
———— & View Sub-System... iv2 (MrAXIv2) |7
View Child Registers for ... - S? ::‘::S? :_ Dnonoone;
View Child Memory for ... - axi_mbz P
View Child Di blyfor.. - RAM (Axivz_bom) L] u
Run Child to Debuggable Point ...~ P ois
Edit Parameters... — - T
Profiling I~ CPUO_ICache - y [
Launch RealView Debugger ~ CPUO_DCache .- ize axi 643 ..
j [YicB190 (eprrowy 777 = [= CPUD Java - @ i
I =
¥, <TOP> CPUO_Memory -
CPUO_TLB - =
| Cycle 56194 CPUD_Stall -
gyc:e g;ifg : CPUO_Software.-
ycle : .
Cycle 101033 : U .
101,427 cycles, 14.62 sec, 6,937.55 cyclesisec Software I Core.coreC™ - Enable d
Command >| w
| cored
|Component: Core (CortexA9_1CPU_32kI_32kD_128TIb_MoFPU_NoJazelle_noNeon) [Core]
& Function Profiling for Core.cored =10
Diagram| |Summary |
Function 100 200 300 400 500 600 700 800)
‘\IIH\II\‘II\HIIH‘IIH\IIH|I\H|I\H|I\H|I\H|\\\I|\\\Il\HI|H\I‘HII\HII‘H
Summary | ¢ <Unknowns
<Unknown| 4
Tkl]
Function: - Duration: - Call depth: -
a
jjjj Left Cycle: - Delta: - Right Cycle: -

Diagram | Summary |

40000 45000 50000 55000 G0000 65000 70000 75000 80000 85000 900
LT WHH \|||l\|“\I‘IH\IHH'I’II\\\h\ phg ||m\\|m|u’| alo g
I \ I |
W | |
|

1 | |
1 o 1T
| ‘
| 1 | O
W I | | I
\ | |
i |

| 1J| I n| m l| |||

__t_memck
frecpen
_fclose_inter
_sys_open

setvbuf
main
FSuparfime
__2printf
_printf_char_
_printf_char_
printf
_printf_input,
fputc
_fisbuf

=
[1
[
[1

e 3 L .“’ AR M
E ‘ H”.-Illw“ J| |::

ferros

I
_printf_int_d |
- ',.|,|. 'I'I .|) .\u '\‘i 1 ; i flacpfo . 1l‘|| i | oy o
_rt_udiv10 i
=T T =
Function: - Duration: - Call depth: -
jjjj Lot Cycle: - Delra - Fight Cycle: -

Now run the simulation as usual while keeping this window open. Stop at an
intermediate point and you can see the function call hierarchy until that time. (PS —

|l t° s not as

i rweuld hapd fa it te lee,uvatch pasiently e

Q2: On which cycle exactly is the main() function in mult_port.c entered? (1 point)
Q3: On which cycle exactly is the main() function in mult_port.c exited? (1 point)

(Please include screenshots)

Once you have entered the main() function, you should step through the code cycle-
by-cycle to see exactly what is happening from the software point-of-view.

Q4: Discuss your observations when you step through the code cycle-by-cycle
within main()? (Please include screenshots to substantiate observations you make)

(1 point)

6.3 Using the Waveform Tracing feature on SoCDesigner Simulator

Function profiling is a useful feature when examining application behavior on a
prototype SoC. However, it is often necessary to observe interface signals as a wave
during run-time (especially when verifying the functionality of custom IP cores vis-

a-vis source code). You performed parts of the following i n
sect i o mitywo dxglore gtiagaia ang

Wor kbook?”, t his
correlate it with source code.

X Carben SoC Designer Simulator - Application-all [Application-all]

File View Object Control Debug Window Help

= =] [=] B " L] o Pin 9] »* St
Open Save Close Brkpts Profile Trace MemMap Wave Run Stop Step Steph | Reset SyncAll [
‘ Zoom %:
Uiitloo =
—E 5
Core
{(CortexA3_1CPU_32KI
KD_128Tlb_NoFPU_NoJ
mxaxivz (MxAXIVZ) i
v) e @ Insert/Remove Breakpoint F9, [
extSemi0 Py Enable/Disable Breakpoint 02)
Edit Breakpoint Properties... [— HEt (ka0]
Z;m“: InsertiRemove Monitor P ois
B Enable/Disable Tracing ::: -
Profiler - Y 1
brid i_ahblite_ | 7 - i
[Vie_piT90 (vic prisn) 7] | (AHBVZLiteToAHBVZSS ?g‘ﬁ;ni:ix»:iuimlhui a B E LG o]
iy =X FYE | w M ATESET i
= I
%, <TOP>
Hcycle 64121 ‘]
| Cycle 65742

: 66,252 cycles, 9.42 sec, 7,033.12 cyclesisec
/| Simulation resetting level 0 (HARD Reset)...
|| Simulation ready.

(=

| Command >|

Connection: Core::axi_m0<-->mxaxiv2::axi_s00 [id = 0]

the “Usin

800 X/ Tracer Properties

(EIEMCore: -axi_m0<-->mxaxiv2::axi_s00

_ AW - AW Channel

B W - W Channel
& B - B Channel

B AR - AR Channel
R - R Channel

Channel |Label

W AWID |AWID 32
= AWADDRAWADDR 32
™ AWLEN |AWLEN

W AWSIZE |AWSIZE
" AWBURS AWBURST
7 AWLOCKAWLOCK
" AWCACHAWCACHE
" AWPROTAWPROT
T AWVALILAWVALID
" AWREAD AWREADY
" AWUSER AWUSER

Enable All| Disabkle All

I Use these settings as defaults

CK Cancel

FSETIETIAIE NS IR N

-

_I Don't prompt

Restart your simulation (Control A Restart simulation). Click on an interface (wire
or port) that you would like to observe waveforms for and select Enable/Disable
Tracing. This opens a Tracer properties window. The screenshots above are for the
AXI_mO (instruction-fetch) port on the Cortex-A9 core. The top section of the tracer
window shows the available channels and the bottom section describes their

signals.

ou

SoC D

an

(

Please read through the AMBA AXI Protocol specifications (at least Chapter 2 for
basic signal descriptions) in /opt/documents/arm_specs/AMBAaxi.pdf to get a full
understanding of what you are observing.

The Tracer properties window shows the four AMBA AXI channels and their
associated signals. For simplicity, we will observe the Address-Write (AW) and
Address Read Channels (AR) channels.

The following Table and screenshots show the signals we enable in Tracer
properties for the AXI_MO interface:

Channel Signals

AW — Write Address Channel AWADDR — Write Address
AWLEN — Burst Length
AWSIZE — Burst Size
AWBURST —Burst Type

W — Write data Channel None
B —Write Response Channel None
AR —Read Address Channel ARADDR —Read Address

ARLEN — Burst Length
AR Size — Burst size
ARBURST — Burst

enn X/ Tracer Properties enn |X| Tracer Properties

Label |Core::axi_m0<-->mxaxiv2::axi_sOO Label |Core::axi_m0<-->mxaxiv2::axi_sOO
B AW - AW Channel B AW - AW Channel

O W - W Channel O W - W Channel

O B - B Channel O B - B Channel

F AR - AR Channel H AR - AR Channel

O R - R Channel O R - R Channel

Channel |Labe| |Size | Channel |Labe| |Size |
L AWID AWID 32 | ARID ARID 32
m AWADDR AWADDR 32 = ARADDR ARADDR 32
m AWLEN AWLEN 4 = ARLEN ARLEN 4
m AWSIZE AWSIZE = ARSIZE ARSIZE

= [AWBURIEXTENGEL - m [ARBURST] EGENGE m
o AWLOCKAWLOCK I ARLOCK ARLOCK

I AWCACEAWCACHE 4 .l ARCACHE ARCACHE 4
o AWPROTAWPROT 3 | ARPROT ARPROT 3
o AWVALIDAWVALID 1 I ARVALID ARVALID 1
-l AWREAD AWREADY 1 | ARREADY | ARREADY 1
- AWUSER AWUSER 64 | ARUSER ARUSER 64

Enable All| Disable Al Enable All| Disable All|

_I Use these settings as defaults _I Use these settings as defaults

_I Don't prompt _I Don't prompt

oK | Cancel oK | Qancell

Once you have set up the tr acesYoushduld c k
see something like this:

o

n

= waveform Viewer ha N £
0 5,000 10,000 15,000 20,000 :
Channel Value \ ! ! ! !

fc oo b o b bocccrea bec |
Core::axi_m0<-->mxaxiv2::axi_s00 AWID - 4l
AWADDR-| -
AWLEN -
AWSIZE -
AWBURST -
AWLOCK -
AWCACHE -
AWPROT -
AWVALID -
AWREADY -
AWUSER -
ARADDR~ -
ARLEN -
ARSIZE -
ARBURST -
ARLOCK - L
ARCACHE -
ARPROT -

ARy AR d

P = P =i T

ol o Left Cycle - Cursor Cycle 0
%‘%‘%‘%‘ Delta - Mouse Cycle - Mouse Value -
Right Cycle - Current Cycle 0

Now run the simulation. You can see now see the bus-level signals at each port when
your application is running in real-time. Please use the Zoom In/Zoom Out buttons
on the toolbar and stop the simulation as necessary.

13,100 19,150 19,200 19.250 19300 19350 19400 13,450 19,500 19550 19600 19,650 19700 19750 19,800 13,850
vl ba b ool s B oo Lo

Channel Value

AWVALID | 0x0
AWREADY | 0x0

ARVALID 0x0 1 L 1 1 1 1 1 1 1 1
ARREADY ox1
ARUSER -

=
o Left Cycle - Cursor Cycle 0
ST o : Mo o
o 100,000200,000 300,000 ”"‘2‘100,000 500,000‘““ 600,00(-) i 700,(:
Channel
\\II\\II\‘II\\|I\\I|\\II\\I\\‘I\\\|\\\I‘\\I\\\I\\‘IHHH\I‘HIHHH‘IH
Core:zaxi_m0<-->mxaxivz: axi_s00 AWID HEE a
AWADDR~ X
AWLEN 3
AWSIZE ¥
AWBURST ¥
AWLOCK ¥
AWCACHE X
AWPRCT | - X
AWVALID | 0x0
AWREADY | 0x0
AWUSER -
ARADDR~
ARLEN
ARSIZE
ARBURST
ARLOCK
ARCACHE
ARPROT | - 9800005800000 8808000000000880]
ARVALID | 0x0 L P L L]
ARREADY | 0x1 1
ARUSER | - fCO00000C00000CCo000000C0CCOC00 T
1= 1=k I =
—— Left Cycle - Cursor Cycle 202
%%%% Delta - Mouse Cycle - Mouse Value -
Right Cycle - Current Cycle 466865

(Same waveform at end of simulation, zoomed out view)

Q5: Repeat the above exercise for the AXI interface between Core::AXI_m1 (Data
port) A MxAXIv2::AXI_s01. Discuss your observations. What is happening? (1
point)

Q6: Repeat the above exercise for the AXI interface between MXAXIv2:: AXI_m00 A
RAM::AXI_s interface/wire. Discuss your observations. (1 point)

Additional Questions for Turn-in: These questions correspond to the sort
application, which you have performed in the previous tutorials/assignments.

Q7: Import the Sort application into Eclipse (Please copy it from /opt/cpak/A9-MP-
AXI-Demo-CMS5.14.0-V2012.11.09-SOCD7.11.0/Applications/sort/ into your home
directory or DS-5 Workspace first). Make a note of the differences between the
source code in the sample application in the tutorial and the benchmark sort

application.
a) Disable the time-slicing implementation between the insertion and shell sort
algorithms controlled by the timer peripheral triggerin g | RQ' s peri odi ca

b) Now repurpose the code to run shell sort (sort0) followed by insertion sort
(sortl) i.e. sequentially. Include the routine to check_sort() for both after
they have run.

c) Execute this code and report the cycle time you obtain. Also submit a
screenshot of the console output.

Q8: Ref. Sec. 6.2: Perform software profiling on your new sort application. What are
the top 5 functions that the application spends most of its time executing. What
percentage of execution time is spent in running sortl_step v/s sort0_step?
Experiment with several input sizes (10-500); present your results in the form of a
table. You could disable the printf() statements when doing this to better
understand the results. Which sort implementation is more efficient? (2 points)

Q9: Ref. Sec. 6.3: Trace the waveform for the APB interface between
cm_bridge_axi_apb::apb00 A cm_timer_apb[0] :: apb when running the original
benchmark sort application (not the modified one from Q7, Q8). Discuss your
observations. Now also add a waveform trace on the TIMINT1 i.e. between
cm_timer_apb[0]::TIMINT1 A intvector[0]::intNumO. Run the simulation and
correlate these signals. Discuss your observations. At which cycles is TIMINT1
triggered? Can you correlate with your observations during the Cosimulation
exercise? Please include screenshots to substantiate your answer. (2 points)

Q10: Ref. Sec. 6.3: Replace the timer with the timer you designed in Assignment 4.
Repeat the previous question with this change. Have you implemented your timer
correctly? If you detect an error, please make corrections here. If your
implementation was correct, discuss how you verify it from the waveform view. (2
points)

Correlation with Class Project:
After you have completed the guided section of the tutorial and attempted the

assignment s, you should be able to compile
modules.

Carbon SoC Designer, ModelStudio and ARM DS-5 are fully featured tools. Please
consult their documentation folders in their respective installation directories (i.e.
/opt/SoCDesigner, /opt/carbon and /opt/DS-5). Also consult the publicly available
documentation from the ARM Infocenter on the web to learn more.

References:

1.

2.

Notes:

ARM Development Studio 5 (DS-5) :
http://www.arm.com/products/tools/software-tools/ds-5/index.php

ARM Cortex A9 Technical Reference Manual (Revision: r2p2) :
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/CI
AECBEB.html

ARM Compiler Tool-chain (Version 5.02) :
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/C
HDDDBGE.html

It is not absolutely necessary to use the ARM DS-5 GUI (calling eclipse) for
this assignment, it is definitely convenient. You are welcome to use the
command line once the tool-chain has been setup in your PATH in Step 1 to
generate the required .axf files. You can use your favorite text editor (vim,
emacs Notepad++ etc.)

You can open the documentation PDF files directly from your terminal using:
$evince <filename.pdf> & (No need to copy everything into your home
folder)

Parts of the documentation are as HTML files, you can open Firefox web-
browser directly from the terminal to navigate using:

$firefox <filename.html> &

Credits: Parts of this tutorial have been adapted from ECE 747 DSP Architecture, SoC
Tutorial #1, Spring 2007 at NC State University.

Contact: Aalap Tripathy (aalap@cse.tamu.edu) for tool access related problems

only.

http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/CIAECBEB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/CIAECBEB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDDDBGE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDDDBGE.html
mailto:aalap@cse.tamu.edu

