Nonlinear Principle Component Analysis Using Autoassociative Neural Networks

By Mark A. Kramer

Presented by Rhema Linder

Intro

- Principle Component Analysis (PCA)
 - \circ Reduces Dimensionality
 - Maps Features Into A Distribution
 - \circ Visual Aid
 - \circ Analysis
- Nonlinear Principle Component Analysis (NLPCA)

 Solves nonlinear problems
 Uses hidden layers NN architecture
 - Can fit to any non-random data
 - Many uses

Outline

- Stochastic Viewpoint
- PCA vs NLPCA
- Architecture
- Hidden Layers and Bottleneck
- Training
- Examples
 - \circ Circle
 - Batch Reaction (Error Comparison)
- Summary

Stochastic Viewpoint

- 1991 Attitude of NNs
- No claims of representing biology
- Mathematically forces compact representations of data

Dimensionality

Superflous Dimensionality

 Mutilple measurments of the same thing

Intrinsic Dimensionality

 The number of independent variables underlying observation

PCA

8,

6,

4,

2,

0.

-2

10

-15

Feature 1

-20

7 8

6

Feature 3

NLPCA

Π

2

4

-4

-2

NLPCA

NLPCA involves nonlinear mappings between the original and reduced dimension spaces.

Feature 2

PCA

NLPCA

• PCA can be solved simply:

VS

PCA

NLPCA

NLPCA is analogous, but is more complex:
 Likewise:

VS

 $\mathbf{T=G}_{i}(\mathbf{Y}) \xrightarrow{row} -- \text{In feature space}$ F individual nonlinear functions.

M individual nonlinear functions.

• G and H use sigmoidal functions

Architecture

Networks implementing mapping and demaping functions.

Hidden Layers and Bottleneck

- Hidden layers necessary to represent non linear data.
- Supervised learning not tractable for these networks
- Because Y is the input and Y' is the output, we can combine the learning of these networks
 - Self-supervised backpropagation == autoassociation
- The bottleneck limits the dimensionality of the data and the layer does not need to be nonlinear
- The combined network cannot be converted into a two layer network.

Training

INPUT MAPPING BOTTLE- DE- OUTPUT LAYER LAYER NECK MAPPING LAYER LAYER LAYER

Training is finished when sum of squared errors is minimized.

Sequential NLPCA

- Can rescale between steps
- Better at including more than just the primary factor

Sequential determination of nonlinear factors by training F networks with one bottleneck node each.

Example 1 - simple test

- NLPCA Outperforms
 PCA
- Both reduce to one factor but only one can be reconstructed

Original data (\blacksquare), reconstruction using four mapping and demapping nodes (o), reconstruction with no mapping nodes (+), reconstruction using PCA (\triangle).

Example 1 - simple test

Table 1. Results of One-Factor Representations for Example 1

Technique	Adjust. Param.	Error E	FPE	AIC
PCA	2	27.8	0.0708	-2.65
ANN, no mapping layers	7	26.4	0.0708	- 2.65
NLPCA, no. mapping nodes				
2	19	10.5	0.0318	-3.45
3	27	1.35	0.00444	-5.42
4	35	0.348	0.00124	-6.70
6	51	0.336	0.00142	-6.57
8	67	0.307	0.00154	-6.50
10	83	0.302	0.00183	-6.36

Example 2 - Batch Reactor

• High dimensional, (100 measurements) data with 25 batches.

Example 2 - Batch Reactor

Summary

- The NLPCA is can remove superfluous dimensionality.
- NLPCA uses a 3 layer NN.
- NLPCA can be applied to the same problems as PCA
 - Data reduction and visualization
 - Quality control
 - Principle component regression
 - \circ et cetera
- NLPCA is generally better than PCA