Parallel Networks that Learn to Pronounce English Text

T. J. Sejnowski
C. R. Rosenberg

Qiong Zhao
February 15, 2010
Outline

- Main idea
- Background
- How the system works
- Network performance
- Analysis of hidden units
- Conclusion
Main idea

- Train an artificial neural network (NETtalk) to pronounce English words: convert a string of English letters to phonemes

- NETtalk has some similarities with observed human performance
Background

- **NETtalk**
 - A class of massively-parallel network systems that learn to convert English text to speech
 - First proposed in 1980’s
 - Turning point in the history of neural networks
DECtalk

- DECtalk is a speech synthesizer and text-to-speech technology
- Use a lookup table for both common and irregular English words
- The NETtalk system used part of DECtalk to convert phonemes to sounds
Novel idea in NETtalk

- Different from DECTalk, NETtalk does not require a large amount of storage space
- It can capture regularities and absorb irregularities in English pronunciation in some way like human nervous system
How does NETtalk work?
How the system works

- How human brain works

Step 1. words recognized by visual system

Step 2. visual information transformed into articulatory information

Step 3. motoneurons control muscles to produce sounds
• NETtalk network architecture
• Processing units

Activation function:

\[s_i = P(E_i) = \frac{1}{1 + e^{-E_i}} \]

\[E_i = \sum_j w_{ij} s_j \]
• Learning algorithm: back-propagation
 ➢ Goal: minimize average squared error

\[
Error = \sum_{i=1}^{26} (s_i^* - s_i^{(N)})^2
\]

where \(N \) represents the output layer, \(s_i^* \) is the correct output provided by a teacher
Learning algorithm: back-propagation

Calculating gradients layer by layer

first compute the error gradient on the output layer:

\[\delta_i^{(N)} = (s_i^* - s_i^{(N)}) P'(E_i^{(N)}) \]

then propagating it backwards through the network:

\[\delta_i^{(n)} = \sum_j \delta_j^{(n+1)} w_{ij}^{(n)} P'(E_i^{(n)}) \]
Learning algorithm: back-propagation

Adjusting weights

Compute weight gradients with an exponentially decaying filter (u is the no. of input patterns):

$$\Delta w_{ij}^{(n)}(u + 1) = \alpha \Delta w_{ij}^{(n)}(u) + (1 - \alpha) \delta_i^{(n+1)} s_j^{(n)}$$

we get the general term:

$$\Delta w_{ij}^{(n)}(u) = \alpha^u \Delta w_{ij}^{(n)}(0) + (1 - \alpha^u) \delta_i^{(n+1)} s_j^{(n)}$$

then we can use $\Delta w_{ij}^{(n)}(u)$ to update the weights:

$$w_{ij}^{(n)}(t + 1) = w_{ij}^{(n)}(t) + \varepsilon \Delta w_{ij}^{(n)}$$
Whole procedure

1. Compute error gradient on the output layer
2. Go backwards to compute error gradient of each unit in each layer
3. Compute weight gradients
4. Update weights
Converting English text to speech

7-letter-window

Why 7?

Correct pronunciation of a letter is contributed by the nearby letters; Resource limited.
• Converting English text to speech
 ➢ Representation of letters
 In the input side, each group contains 29 units:
 26 letters + comma + period + word boundary marker
Converting English text to speech

- Representation of phonemes

In the output side, there are 26 units in total:

21 articulatory feature + right syllable boundary + left syllable boundary + primary stress + Secondary Stress + Tertiary Stress

(Refer to the Appendix)
Converting English text to speech

- Translate output to phoneme:
 - Suppose ν : output vector
 - w_i : vector of each phoneme
 - Both ν and w_i are binary vectors

EX.

$$\nu = (1, 0, 0, \cdots, 1, 0, 1)$$

26 components
Compute inner product

\[\langle v | w_i \rangle \]

Choose \(w_j \) which made the **smallest angle** with \(v \) (closest to \(v \)) as the “best guess”
Converting English text to speech

Training materials:

1. Phonetic transcriptions from informal, continuous speech of a child
 (text moved through input window with boundary symbols between words)

2. Miriam Webster’s Pocket Dictionary
 (words moved through input widow individually)
Performance

- Continuous informal speech (1024 word corpus)
Analysis

When plotted on double logarithmic scale, learning curves were approximately straight lines, so that the learning follows a power law, which is a characteristic of human skill learning.
Audio sample

nettalk.mp3

Learning corpus taken from *Informal Speech*

There are three recordings:

1. Network studying from zero weights
2. After 20 passes
3. Generalized to fresh text
Resistance to damage
Recovery from damage
• **Dictionary** (1000 commonly used words)

 ➢ Performance related to number of hidden units
- Generalization ability:
 Average 77% on a 20,012 words dictionary; If continue to learn, reach 85% after first pass, 90% after five passes
- Performance related to size of input window:
 Network with 11 input groups performs a little better than that with 7 input groups
Analysis of the Hidden Units

- The network had discovered some coding methods: (test case: 7 input groups and 80 hidden units)
Hierarchical clustering of hidden units for letter-to-sound correspondences:

- Vowels and consonants were completely separated
- Vowels were clustered mostly according to letter
- Consonants were clustered mostly according to similarity of their sounds
Conclusion

- Could be trained on any language with the same set of letters and phonemes
- Learn from practice, following a power law
- Resistant to damage, due to distributed information
- Recovery from damage is quick