Spiking Neuron Networks
A Survey

Article by Helene Paugam-Moisy
Presentation by Jeremy Wurbs
May 3, 2010
Overview

- Motivation
- Biology
- SNN Models
- Temporal Coding
- ESN’s and LSM’s
- Computational Power of SNNs
- Training/Learning with SNNs
- Software/Hardware Implementation
- Applications
- Discussion
Neural Network Classification

1st Generation:
- Perceptrons, Hopfield Networks, MLP with threshold units

2nd Generation:
- Networks with non-linear activation units and real-valued, continuous set of output units

3rd Generation:
- Spiking neuron networks, using firing times of neurons for information encoding
Four Ions:

- Na^+
- K^+
- Ca^{2+}
- Cl^-

Membrane Electrode:

- 3Na^+
- 2K^+
- Na^+
- K^+

0 [mV]

-70 [mV]

The Biological Neuron

- Dendrite
- Soma (cell body)
- Nucleus
- Axon terminal button
- Myelin sheath

Diagram of neuron with action potential and voltage changes over time.
Traditional Spike Representation

- Alpha Function
- Integrator
- Coincidence Detector

Example of α-function:

\[f(t) = \frac{t}{0.1} \cdot \exp\left(-\frac{t}{0.1}\right) \]
Hodgkin-Huxley Model

- Models membrane potential
 - Conductance-based
 - Defined in 1952 (Note: Na-K Pump disc. in 1957)

\[C \frac{du}{dt} = -g_{Na} m^3 h (u - E_{Na}) - g_K n^4 (u - E_K) - g_L (u - E_L) + I(t) \]

\[C \frac{du}{dt} = - \sum_k I_k (t) + I(t) \]

\[\sum_k I_k = g_{Na} m^3 h (u - E_{Na}) + g_K n^4 (u - E_K) + \frac{1}{R} (u - E_L) \]

... where variables m, n and h are themselves governed by 3 other differential equations, function of time.
Leaky Integrate & Fire Model

- Considers spike as event
- Ions leak out, requiring time constant, τ

\[
\tau_m \frac{du}{dt} = u_{\text{rest}} - u(t) + RI(t)
\]

\[
C \frac{du}{dt} = -\frac{1}{R} u(t) + I(t)
\]

- u membrane potential
- Spike emission time $t^{(f)}$ is defined by $u(t^{(f)}) = \vartheta$ with $u'(t^{(f)}) > 0$
Izhikevich’s Firing Behaviors

- 20 Possible Neuron Firing Behaviors
- LIF can only accommodate 3 (A, G, & L)
Izhikevich Neuron Model

Two variables

- Voltage Potential \((v) \)
- Membrane Recovery (activation of K currents and inactivation of Na currents) \((u) \)
- \(W \) is the weighted input(s), \(a, b, c \) & \(d \) are abstract parameters of the model

\[
\frac{du}{dt} = a(bv - u) \\
\frac{dv}{dt} = .04v^2 + 5v + 140 - u + W
\]

When \((v > \text{threshold}) \), \(v \) and \(u \) are reset:

\[
v \rightarrow c \\
u \rightarrow u + d
\]
Spike Response Model

- Adds a refractory period

\[u_j(t) = \sum_{t_{j}^{(f)} \in F_j} \eta_j \left(t - t_{j}^{(f)} \right) + \sum_{i \in R_j} \sum_{t_{i}^{(f)} \in F_i} w_{ij} \epsilon_{ij} \left(t - t_{i}^{(f)} \right) + \int_{0}^{\infty} \kappa_j(r) I(t - r) dr \]

(4) if external input current

Spike & Spike Reset

Weighted Sum of Inputs

External Current

\[\eta_j(s) = -\eta_0 \exp \left(-\frac{s - \delta^{abs}}{\tau} \right) H(s - \delta^{abs}) - K H(s) H(\delta^{abs} - s) \]

\[\eta_j(s) = -\theta \exp \left(-\frac{s}{\tau} \right) H(s) \]

\[\epsilon_{ij}(s) = \frac{s - d_{ij}^{ax}}{\tau_s} \exp \left(-\frac{s - d_{ij}^{ax}}{\tau_s} \right) \]

\[\epsilon_{ij}(s) = \left[\exp \left(-\frac{s - d_{ij}^{ax}}{\tau_m} \right) - \exp \left(-\frac{s - d_{ij}^{ax}}{\tau_s} \right) \right] H(s - d_{ij}^{ax}) \]
Model Advantages

- **Hodgkin-Huxley**
 - Accurate Modeling
 - Predicts membrane potentials due to pharmacological blocking of ion channels

- **Integrate & Fire**
 - Easy implementation
 - Computation-light

- **Spike Response Model**
 - Includes refractory phase
Rate Coding v. Temporal Coding

- **Rate Coding**
 - Information transmitted by rates
 - I.E. number of spikes per unit time

- **Temporal Coding**
 - The exact timing of spikes matter
(Trad.) Temporal Computing

\[u_j(t) = \sum_{t_j^{(f)} \in F_j} \eta_j \left(t - t_j^{(f)} \right) + \sum_{i \in \Gamma_j} \sum_{t_i^{(f)} \in F_i} w_{ij} \epsilon_{ij} \left(t - t_i^{(f)} \right) \]

\[\sum_{i \in \Gamma_j} w_{ij} \epsilon_{ij} \left(t_j - t_i \right) = \sum_{i \in \Gamma_j} w_{ij} \lambda_{ij} \left(t_j - t_i - \Delta_{ij} \right) = \theta \]

Figure 9: Shapes of postsynaptic potential (EPSP or IPSP) for computing a weighted sum in temporal coding. Right: Example variation of neuron \(N_j \) membrane potential for computing \(\sum_{i \in \Gamma_j} \alpha_{ij} x_i \) and resulting firing time \(t_j \). All the delays \(\Delta_{ij} \) have been set equal to \(\Delta \). Neuron \(N_4 \) (third firing) is inhibitory whereas the other three are excitatory. The slopes of the PSPs are modulated by the synaptic efficacies \(w_{ij} \).
Reviewed models describe single neurons, still need to create networks

Traditional Architectures
- Use temporal coding to reduce SNN to NN
- Refer to previous slide

Echo State Networks & Liquid State Machines
Echo State Networks

- Produce an echo state network
- Sample network training dynamics
- Compute output weights, use any linear regression algorithm
- SNs implemented in ESN outperform traditional ESNs
Liquid State Machines

- Turns time varying input into a spatiotemporal pattern of activation
- Large number of non-linear activation states
- Activations go into readout neuron(s) (linear discriminate units)

Figure 11: Architecture of a “Liquid State Machine”. A continuous stream of values $u(.)$ is injected as input into the liquid filter L^M. A sufficiently complex excitable “liquid medium” creates, at time t, the liquid state $x^M(t)$, which is transformed by a memoryless readout map f^M to generate output $y(t)$.
Cell Assemblies

“A group of neurons with strong mutual excitatory connections.”

Excite one, excite all (many)

“Grandmother Neural Groups”

Synfire chain: pool of in-sync neurons

Transient synchrony
 - Leads to collective sync. event; computational building block, “many variables are cur. ~equal”

Polychronization
 - "reproducible time-locked but not synchronous firing patterns"
Learning Rules

- Traditional Methods
- New SNN Methods
Applying Traditional Learning Rules to SNN

- Hopfield Networks (Maass & Natschlager)
- Kohonen SOMs (Ruf & Schmitt)
- RBF Networks (Natschlager & Rug)
- ML RBF Networks (Bohte, La Poutre & Kok)
- SNN shown to be universal function approximators
Hebbian-based Learning

“When a pre-synaptic neuron repeatedly fires right before a post-synaptic neuron fires, the weight between the two neurons increases.”

Hebbian Properties

- Synaptic Scaling
- Synaptic Redistribution
- Spike-timing dependent synaptic plasticity
Spike-timing Dependent Synaptic Plasticity (STDP)
Maximization of mutual information

BCM model

Minimization of entropy

- Minimize the response variability in the post-synaptic neuron given a particular input pattern
Event-driven Simulation
- Vs. time-driven simulation
- Most of the time neurons aren’t firing, so
- Calculate when firing events occur, not what every neuron is doing at every time step
- Delayed firing problem

Parallel
- SpikeNET
- DAMNED simulator
Applications

- Hopfield and Brody, Digit Recognition
 - Generalize from small number of examples
 - Robust to noise
 - Uses temporal integration of transient synchrony
 - Time warp invariant
 - A set of neurons fire synchronously to a particular input (transient synchrony)
- Many examples in
 - Speech processing
 - Computer Vision
Spiking Neuron Networks

- Biologically motivated
- Computationally difficult without simplification
- Traditional learning rules don’t take advantage of timing sequencing
- New learning rules will have to be forthcoming before SNN show their potential