Speech Analysis and Synthesis by Linear Prediction of the Speech Wave
B.S. Atal
Suzanne L. Hanauer

Presented by
Tuneesh Kumar Lella
Agenda

- Motivation
- Model of speech wave
- Speech Analysis
- Speech synthesis
- Applications
- Discussion
Motivation

- Efficient representation of speech signals in terms of less number of slowly varying parameters
- Spectral analysis - Not efficient
 - Needs long speech segments
 - Little information between pitch harmonics
Model of Speech Wave

- Speech sounds are produced by acoustical excitation of human vocal tract
- Representation of speech signal

\[s_n = \sum_{k=1}^{p} a_k s_{n-k} + \delta_n \]
Recall: the definition of Z-transform

\[X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} \]

\[e(n) = x(n) - \hat{x}(n) = x(n) - \sum_{k=1}^{K} a_k x(n - k) \]

\[E(z) = X(z)[1 - \sum_{k=1}^{P} a_k z^{-k}] \]

or

\[X(z) = E(z)H(z), \quad H(z) = \frac{1}{1 - \sum_{k=1}^{P} a_k z^{-k}} \]
Z-Transform of the Speech Wave

- Glottal volume flow together with radiation

\[\frac{K_1K_2(1 - z^{-1})}{(1 - z_0z^{-1})(1 - z_bz^{-1})} \]

- It is approximated as

\[\frac{K_1K_2}{[1 + (1 - z_0z^{-1})(1 - z_bz^{-1})]^{\frac{1}{2}}} \]
Number of Predictor Coefficients

- Number of coefficients ‘p’ determined by
 - Number of resonances and anti-resonances
 - Nature of glottal volume function
 - Radiation

- Mostly used ‘p’ value is 12
Hence speech wave can be represented by
- Predictor coefficients (a_k)
- Pitch period
- RMS values of speech samples
- A binary parameter (speech-voiced or unvoiced)
Speech Analysis

- Samples of voiced speech are linearly predictable from the past ‘p’ samples
- Prediction error
 \[E_n = s_t - \hat{s}_t \quad s_t = \sum_{k=1}^{p} a_k s_{t-k} . \]
- Mean squared prediction error is
 \[\langle E_n^2 \rangle_{av} = \langle (s_t - \sum_{k=1}^{p} a_k s_{t-k})^2 \rangle_{av} . \]
- Coefficients \(a_k \) are selected such that mean square error is minimum
Pitch Analysis

- Positions of pitch pulses can be found using prediction errors E_n.
- The pulses are the vertical lines in the figure.
Speech Synthesis

- Block diagram of speech synthesizer
Synthesizer Control Parameters

- Control parameters reset at every pitch period for voiced speech and once every 10msec for unvoiced speech.
- To ensure stability of recursive filter, autocorrelation is used for prediction of predictor coefficients.
Recall: How to minimize a function $f(a_1, a_2, \ldots, a_P)$?

Answer: \[
\frac{\partial f}{\partial a_i} = 0, \quad i = 1, 2, \ldots, P
\]

Here \[f(a_1, \ldots, a_P) = \sum_{n=1}^{M} [x(n) - \sum_{k=1}^{P} a_k x(n-k)]^2\]

\[
\frac{\partial f}{\partial a_i} = 0 \Rightarrow \sum_{n=1}^{M} x(n)x(n-i) = \sum_{k=1}^{P} a_k \sum_{n=1}^{M} x(n-i)x(n-k)
\]

(1) auto-correlation
Autocorrelation Method

\[\sum_{n=1}^{M} x(n)x(n-i) = \sum_{k=1}^{P} a_k \sum_{n=1}^{M} x(n-i)x(n-k) \]

Optimal LPC given by

\[r_n(i) = \sum_{k=1}^{P} a_k r_n(|i-k|) \]

Hence, we can compute the predictor coefficients from samples of autocorrelation function and vice-versa.
Synthesized Speech Signal

- Amplitude of nth synthesized sample ‘s_n’

$$s_n = q_n + v_n = q_n + g\cdot u_n$$

Where q_n is from linear predictor and v_n is contributed by excitation from current segment

$$q_n = \sum_{k=1}^{p} a_k q_{n-k}, \quad 1 \leq n \leq M$$

$$u_n = \sum_{k=1}^{p} a_k u_{n-k} + e_n, \quad 1 \leq n \leq M$$

- The mean squared values of speech samples P_s is

$$P_s = \frac{1}{M} \sum_{n=1}^{M} (q_n + g\cdot u_n)^2 = (\overline{q_n + g\cdot u_n})^2$$

$$\Rightarrow \quad g^2\overline{u_n}^2 + 2g\overline{q_n\cdot u_n} + \overline{q_n}^2 - P_s = 0.$$

- Equation is solved to find ‘g’
Computer Simulation of Analysis-Synthesis System

- Speech wave low pass filtered to 5KHz and then sampled at frequency of 10KHz
- Optimal value for p is found to be 12
Comparison of synthetic and original speech signals

The uttered sentence is “It’s time we rounded up that herd of Asian cattle”
Applications

- Digital storage and transmission of speech
- Separation of spectral envelope and fine structure
- Formant analysis
- Re-forming the speech signals
Digital Storage and Transmission of Speech

- Efficient coding method for synthesizing control information needed
- Encoding predictor coefficients should ensure stability of linear filter
- Direct quantization not efficient for predictor coefficients
- Efficient method - quantize frequencies and bandwidths of poles
- Pitch (6 bits), RMS values (5 bits), voiced-unvoiced (1 bit) and poles (60 bits) - 72 bits in total
Separation of Spectral Envelope and Fine Structure

- Fine structure is contributed by the source.
- Spectral envelope is the power spectrum of the impulse response of linear filter.
- Relation between Spectral Envelope $G(f)$ and predictor coefficients a_k is expressed as:

$$G(f) = \frac{1}{|1 - \sum_{k=0}^{p} a_k e^{-2\pi i k f_s}|^2}$$

- Spectral samples of $G(f)$, spaced $f_s/2p$ apart, are sufficient for reconstruction of spectral envelope.
Spectral Envelope

- Spectral envelope for the vowel ‘I’ in “we” spoken by a female speaker at F0=200Hz
Formant Analysis

- Objective is to determine complex natural frequencies of vocal tract
- Poles contributed by source fall on real axis or they have a relatively small peak
- Magnitude of spectral peak of a pole is compared to a threshold to determine whether the pole is natural frequency of vocal tract
Formant Analysis

- Formant frequencies for the utterance “we were away a year ago” by male speaker

Wideband sound spectrogram

Formants obtained by computer program
Re-forming the Speech Signals

- Synthesis procedure allows independent control of spectral envelope, relative durations, pitch and intensity
- Speaking rate may be altered
- Recovery of “helium speech”
Conclusions

- Problems encountered with Fourier analysis were removed
- Speech signal is synthesized by a single recursive filter
- Synthesized speech has no perceptible degradation in quality
- Synthesis parameters encoded efficiently
- Computationally very fast
Thank You