Lecture 5: Dimensionality reduction (PCA)

- The curse of dimensionality
- Dimensionality reduction
 - Feature selection Vs. feature extraction
 - Signal representation Vs. classification
- Principal Components Analysis
The curse of dimensionality

- **The curse of dimensionality**
 - A term coined by Bellman in 1961
 - Refers to the problems associated with multivariate data analysis as the dimensionality increases
 - We will illustrate these problems with a simple example

- **Consider a 3-class pattern recognition problem**
 - A simple approach would be to
 - Divide the feature space into uniform bins
 - Compute the ratio of examples for each class at each bin and,
 - For a new example, find its bin and choose the predominant class in that bin
 - In our toy problem we decide to start with one single feature and divide the real line into 3 segments

 ![Diagram showing 3-class pattern recognition](image)

 - After we have done this, we notice that there exists too much overlap for the classes, so we decide to incorporate a second feature to try and improve the classification rate
The curse of dimensionality (2)

- We decide to preserve the granularity of each axis, which raises the number of bins from 3 (in 1D) to $3^2 = 9$ (in 2D)
 - At this point we are faced with a decision: do we maintain the density of examples per bin or do we keep the number of examples we used for the one-dimensional case?
 - Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
 - Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

- Moving to three features makes the problem worse:
 - The number of bins grows to $3^3 = 27$
 - For the same density of examples the number of needed examples becomes 81
 - For the same number of examples, well, the 3D scatter plot is almost empty
The curse of dimensionality (3)

- Of course, our approach to divide the sample space into equally spaced bins was quite inefficient
 - There are other approaches that are much less susceptible to the curse of dimensionality, but the problem still exists
- How do we beat the curse of dimensionality?
 - By incorporating prior knowledge
 - By providing increasing smoothness of the target function
 - By reducing the dimensionality
- In practice, the curse of dimensionality means that, for a given sample size, there is a maximum number of features above which the performance of our classifier will degrade rather than improve
 - In most cases, the additional information that is lost by discarding some features is (more than) compensated by a more accurate mapping in the lower-dimensional space

![Graph showing the relationship between performance and dimensionality](image-url)
The curse of dimensionality (4)

- There are many implications of the curse of dimensionality
 - Exponential growth in the number of examples required to maintain a given sampling density
 - For a density of \(N \) examples/bin and \(D \) dimensions, the total number of examples is \(N^D \)
 - Exponential growth in the complexity of the target function (a density estimate) with increasing dimensionality
 - “A function defined in high-dimensional space is likely to be much more complex than a function defined in a lower-dimensional space, and those complications are harder to discern” --Friedman
 - This means that a more complex target function requires denser sample points to learn it well!
 - What to do if it ain’t Gaussian?
 - For one dimension, a large number of density functions can be found in textbooks, but for high-dimensions almost only the multivariate Gaussian density is left, and for larger values of \(D \), the Gaussian density can only be handled in a simplified form!
 - Humans have an extraordinary capacity to discern patterns and clusters in 1, 2 and 3-dimensions, but these capabilities degrade drastically for 4 or higher dimensions
Dimensionality reduction (1)

- Two approaches are available to perform dimensionality reduction
 - Feature extraction: creating a subset of new features by combinations of the existing features
 - Feature selection: choosing a subset of all the features (the ones more informative)
 - Feature selection will be covered at the end of the course

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix}_{\text{feature selection}} \rightarrow \begin{bmatrix}
 x_{i_1} \\
 x_{i_2} \\
 \vdots \\
 x_{i_M}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix}_{\text{feature extraction}} \rightarrow \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_M
\end{bmatrix} = f\left(\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix} \right)
\]

- The problem of feature extraction can be stated as
 - Given a feature space \(x_i \in \mathbb{R}^N \) find a mapping \(y = f(x) : \mathbb{R}^N \rightarrow \mathbb{R}^M \) with \(M < N \) such that the transformed feature vector \(y_i \in \mathbb{R}^M \) preserves (most of) the information or structure in \(\mathbb{R}^N \).
 - An optimal mapping \(y = f(x) \) will be one that results in no increase in the minimum probability of error
 - This is, the probability of error is the same when a Bayes decision rule is applied on initial space \(\mathbb{R}^N \) and in the reduced space \(\mathbb{R}^M \)
Dimensionality reduction (2)

- In general, the optimal mapping $y=f(x)$ will be a non-linear function
 - However, there is no systematic way to generate non-linear transforms
 - The selection of a particular subset of transforms is problem dependent
 - For this reason, feature extraction is commonly limited to linear transforms: $y=Wx$
 - This is, y is a linear projection of x
 - NOTE: When the mapping is a non-linear function, the reduced space is called a **manifold**

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix}
\xrightarrow{\text{linear feature extraction}}
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_M
\end{bmatrix} =
\begin{bmatrix}
 w_{11} & w_{12} & \cdots & w_{1N} \\
 w_{21} & w_{22} & \cdots & w_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{M1} & w_{M2} & \cdots & w_{MN}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix}
\]

- We will focus on linear feature extraction for now on, and revisit non-linear techniques when we cover multi-layer perceptrons
Signal representation versus classification

- The selection of the feature extraction mapping $y=f(x)$ is guided by an objective function that we seek to maximize (or minimize).

- Depending on the criteria measured by the objective function, feature extraction techniques are grouped into two categories:
 - **Signal representation**: The goal of the feature extraction mapping is to represent the samples accurately in a lower-dimensional space.
 - **Classification**: The goal of the feature extraction mapping is to enhance the class-discriminatory information in the lower-dimensional space.

- Within the realm of linear feature extraction, two techniques are commonly used:
 - Principal Components Analysis (PCA)
 - uses a signal representation criterion
 - Linear Discriminant Analysis (LDA)
 - uses a classification criterion
Principal Components Analysis, PCA (1)

- The objective of PCA is to perform dimensionality reduction while preserving as much of the randomness in the high-dimensional space as possible
 - Let \(x \) be an \(N \)-dimensional random vector, represented as a linear combination of orthonormal basis vectors \([\phi_1 | \phi_2 | \ldots | \phi_N] \) as
 \[
 x = \sum_{i=1}^{N} y_i \phi_i \text{ where } \phi_i | \phi_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}
 \]
 - Suppose we choose to represent \(x \) with only \(M (M<N) \) of the basis vectors. We can do this by replacing the components \([y_{M+1}, \ldots, y_N]^T\) with some pre-selected constants
 \[
 \hat{x}(M) = \sum_{i=1}^{M} y_i \phi_i + \sum_{i=M+1}^{N} b_i \phi_i
 \]
 - The representation error is then
 \[
 \Delta x(M) = x - \hat{x}(M) = \sum_{i=1}^{N} y_i \phi_i - \left(\sum_{i=1}^{M} y_i \phi_i - \sum_{i=M+1}^{N} b_i \phi_i \right) = \sum_{i=M+1}^{M} (y_i - b_i) \phi_i
 \]
 - We choose to measure this representation error by the mean-squared magnitude of \(\Delta x \)
 \[
 \bar{e}^2(M) = E[\Delta x(M)^2] = E \left(\sum_{i=M+1}^{N} \sum_{j=M+1}^{N} (y_i - b_i)(y_j - b_j) \phi_i^T \phi_j \right) = \sum_{i=M+1}^{N} E[(y_i - b_i)^2]
 \]
 - Among all the basis vectors \(\phi_i \) and constants \(b_i \) we choose the ones that minimize this mean-square error
Principal Components Analysis, PCA (2)

- The optimal values of b_i are found by computing the partial derivative of the objective function and equating to zero
 \[
 \frac{\partial}{\partial b_i} E[(y_i - b_i)^2] = -2(E[y_i] - b_i) = 0 \quad \Rightarrow \quad b_i = E[y_i]
 \]
 - So we will replace the discarded y_i's by their expected value (an intuitive solution)
- The mean-square error can be written as
 \[
 \bar{\varepsilon}^2(M) = \sum_{i=M+1}^{N} E[(y_i - E[y_i])^2] = \sum_{i=M+1}^{N} E[(x\phi_i - E[x\phi_i])^T(x\phi_i - E[x\phi_i])] \\
 = \sum_{i=M+1}^{N} \phi_i^T E[(x - E[x])(x - E[x])] \phi_i = \sum_{i=M+1}^{N} \phi_i^T \Sigma_x \phi_i
 \]
- We seek to find the solution that minimizes this expression subject to the orthonormality constraint, which we incorporate into the expression using a set of Lagrange multipliers λ_i
 \[
 \bar{\varepsilon}^2(M) = \sum_{i=M+1}^{N} \phi_i^T \Sigma_x \phi_i + \sum_{i=M+1}^{N} \lambda_i (1 - \phi_i^T \phi_i)
 \]
- Computing the partial derivative with respect to the basis vectors
 \[
 \frac{\partial}{\partial \phi_i} \bar{\varepsilon}^2(M) = \frac{\partial}{\partial \phi_i} \left[\sum_{i=M+1}^{N} \phi_i^T \Sigma_x \phi_i + \sum_{i=M+1}^{N} \lambda_i (1 - \phi_i^T \phi_i) \right] = 2(\Sigma_x \phi_i - \lambda \phi_i) = 0 \quad \Rightarrow \quad \Sigma_x \phi_i = \lambda \phi_i
 \]
 - So ϕ_i and λ_i are the eigenvectors and eigenvalues of the covariance matrix Σ_x
Principal Components Analysis, PCA (3)

- We can express the sum-square error as

\[\bar{e}^2(M) = \sum_{i=M+1}^{N} \phi_i^T \Sigma \phi_i = \sum_{i=M+1}^{N} \phi_i^T \lambda_i \phi_i = \sum_{i=M+1}^{N} \lambda_i \]

- In order to minimize this measure, \(\lambda_i \) will have to be smallest eigenvalues
 - Therefore, to represent \(x \) with minimum sum-square error, we will choose the eigenvectors \(\phi_i \) corresponding to the largest eigenvalues \(\lambda_i \)

PCA dimensionality reduction

The optimal* approximation of a random vector \(x \in \mathbb{R}^N \) by a linear combination of \(M \) \((M<N) \) independent vectors is obtained by projecting the random vector \(x \) onto the eigenvectors \(\phi_i \) corresponding to the largest eigenvalues \(\lambda_i \) of the covariance matrix \(\Sigma_x \)

*optimality is defined as the minimum of the sum-square magnitude of the approximation error
Principal Components Analysis, PCA (4)

- **NOTES**
 - Since PCA uses the eigenvectors of the covariance matrix Σ_x, it is able to find the independent axes of the data under the unimodal Gaussian assumption
 - For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes
 - The main limitation of PCA is that it does not consider class separability since it does not take into account the class label of the feature vector
 - PCA simply performs a coordinate rotation that aligns the transformed axes with the directions of maximum variance
 - **There is no guarantee that the directions of maximum variance will contain good features for discrimination!!!**

- **Historical remarks**
 - Principal Components Analysis is the oldest technique in multivariate analysis
 - PCA is also known as the Karhunen-Loève transform (communication theory)
 - PCA was first introduced by Pearson in 1901, and it experienced several modifications until it was generalized by Loève in 1963
PCA examples (1)

- In this example we have a three-dimensional Gaussian distribution with the following parameters

\[
\begin{bmatrix}
25 & -1 & 7 \\
-1 & 4 & -4 \\
7 & -4 & 10
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 \\
5 \\
2
\end{bmatrix}^T
\]

- The three pairs of principal component projections are shown below

- Notice that the first projection has the largest variance, followed by the second projection
- Also notice that the PCA projections de-correlate the axis (we knew this since Lecture 2)
PCA examples (2)

- This example shows a projection of a three-dimensional data set into two dimensions
 - Initially, except for the elongation of the cloud, there is no apparent structure in the set of points
 - Choosing an appropriate rotation allows us to unveil the underlying structure. (You can think of this rotation as "walking around" the three-dimensional set, looking for the best viewpoint)

- PCA can help find such underlying structure. It selects a rotation such that most of the variability within the data set is represented in the first few dimensions of the rotated data
 - In our three-dimensional case, this may seem of little use
 - However, when the data is highly multidimensional (10’s of dimensions), the analysis is quite powerful