Lecture 7: Linear and quadratic classifiers

m Bayes classifiers for Normally distributed classes
e Case 1: =6l
e Case 2: =% (X diagonal)
Case 3: X=X (X non-diagonal)
e Case 4: Z=c/l
e Case 5: 2#%, general case
m Linear and quadratic classifiers: conclusions
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Bayes classifiers for Normally distributed classes

m On Lecture 4 we showed that the decision rule

(MAP) that minimized the probability of error could Class assignment
be formulated in terms of a family of discriminant T
functions Select max

choose w; if gi(x)>g;(x) Vj=i
where g;(x) =P(w; | x) Discriminant
functions

e As we will show, for classes that are normally distributed,
this family of discriminant functions can be reduced to very
simple expressions Features

m General expression for Gaussian densities
e The multivariate Normal density function was defined as

1 1
fy(X)=—————exp|-= x—p)T21x—p)]
(x) ey p[ 2( (

e With this in mind, and utilizing Bayes rule, the MAP discriminant function becomes

_ _Px]w)P(w)) _
gi(x)=P(w; | x)= P(X) - @ )" |2.|

D=2 ()’ 50 Pt

e Eliminating constant terms
- 1
6,09=[Z[" exp[—g(x —H)" (- ui>]P<wi>

e We take natural logs since the logarithm is a monotonically increasing function

009 =2 (X~ T (x~1)-Slogl(E, )+ logP(w)

= This expression is called a quadratic discriminant function
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Case 1: =07l

m This situation occurs when the features are statistically independent with the same
variance for all classes

¢ In this case, the quadratic discriminant function becomes

dropping the
second term

s (x-h) (x—)- 5 Nioglo?)+loglP(w)) =

207

gi<x>=—%(x—uoT(ozl)'l(x—ui)-%Iog@ozn\)ﬂog(mwi)):—

1 ,
5oz (X=H) (x—p,)+log(P(w,))

e Expanding this expression

1
gi(x) - 20_2

e Eliminating the term x™x, which is constant for all classes

(X -M )T (X - Ui)"" Iog(P(wi)) == 2:;_2 (XTX - ZUiTX + UiTUi )+ Iog(P(wi))

1 LI T
0.09= 5 (201, J+1oglP(w) = wix-+w,
i —>
w, = M o e Distance >
02 X > -
where 3
W, = —ip.Tp. +log(P(w))) TN ks
i og2 it i » Distance " 3
_ o o o ) i e —> class
= Since the discriminant is linear, the decision boundaries e =
S
9i(x)=g;(x), will be hyper-planes d =
. =
¢ If we assume equal priors —»
9 P o Distance >
0,0 =~ =5 (X~ 1) (x— 1)
20
m This is called a minimum-distance or nearest mean classifier
= The loci of constant probability for each class are hyper-spheres
= For unit variance (02=1), the distance becomes the Euclidean distance
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Case 1: X.=c%l, example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

w=03 2 w=[7 4] p=[2 sl

2 0 2 0 2 0
%, = 3, = 3, =
0 2 0 2 0 2

o, l;"! i
g e
S
i
T
7=
([

@"&
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Case 2: =% (X diagonal)

m The classes still have the same covariance matrix, but the features are allowed to have
different variances
¢ In this case, the quadratic discriminant function becomes

0.0 == (X~ 1) £"(x ~)- 3 1og(%. ) +og(P(w) =

. 0’ 1 o;
:_E(X_Ui)T (X_Ui)_EIOg +|09(P(wi)):
oy oq
_ _%g—(x[k] ;E’i[k])z —%Iog]j o¢ +log(P(w,)) =

_ 13 XK - 2K U KE L

N
~log] [ o +log(P(w,)
2 ) o-i 2 g k ( )

e Eliminating the term x[k]?, which is constant for all classes

__ 13 2kuK+RKE 1
gi(x)_ Zé 0_5 2

Iogﬁof +log(P(w)))

 This discriminant is linear, so the decision boundaries g;(x)=g;(x), will be also be hyper-planes
e The loci of constant probability are hyper-ellipses aligned with the feature axis

¢ Note that the only difference with the previous classifier is that the distance of each axis is normalized by the
variance of the axis
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Case 2: 2= X (X diagonal), example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-class,
2-dimensional problem with the following class
mean vectors and covariance matrices and
equal priors

w=B3 2[ =[5 4] p=[2 sl

10 10 10
2, = 2, = 2, =
0 2 0 2 0 2
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Case 3: =% (X non-diagonal)

= In this case, all the classes have the same covariance matrix, but this is no longer diagonal
» The quadratic discriminant becomes

9.0 =~ (x ~H)" £*(x —)- 2 log(£, ) +10g(P(w)) =
— - (x=) E - )-log(E) + oglP(w)
= Eliminating the term log|X|, which is constant for all classes
009 =-2(x~h)" T(x-p)+log(P(w))

e The quadratic term is called the Mahalanobis distance, a very important distance in Statistical PR

A

Mahalanobis Distance CX
a=(x=y) T(x-y)

[x-y

=K

. . . 2
= The Mahalanobis distance is a vector distance that % - by
uses a 2!t norm [ -1[* =K
e Y can be thought of as a stretching factor on the space >

e Note that for an identity covariance matrix (X=I), the
Mahalanobis distance becomes the familiar Euclidean distance
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Case 3: =% (X non-diagonal)

e Expansion of the quadratic term in the discriminant yields

9,(x) = —%(X—ui)T Y (x—p) +log(P(w))) = —%(XT Sx—2pT S x+pT S ) +log(P(w)

e Removing the term x"Y.x, which is constant for all classes

009 == (21 S x+p 27+ loglP(w)

. ) 3 B3 pistance >
e Reorganizing terms we obtain X > <
5
o K
gi(x)= WiTX + W 2 5! Distance » 3
i’ c —> class
-1
w; =Xl e 2
where 1 1, H =
Wio = =5 M hY M; +logP(w;) =
2 He— .
» Distance >

e This discriminant is linear, so the decision boundaries will also be hyper-planes
e The constant probability loci are hyper-ellipses aligned with the eigenvectors of Y,
e If we can assume equal priors

909 =2 (X —H)" T (x-h)

e The classifier becomes a minimum (Mahalanobis) distance classifier
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Case 3: =% (X non-diagonal), example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

w=B 2 u=l5 4 p=[2 5

1 0.7 1 0.7 1 07
Zl = ZZ = Z3 =
0.7 2 0.7 2 0.7 2
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Case 4: X.=c/

» In this case, each class has a different covariance matrix, which is proportional to the
identity matrix
e The quadratic discriminant becomes

1 Tv-1 1
6,09 =—7 (X=H)" T (x~1)- log([)+log(P(w) =
1 T 2 1 2
=~ 2 (X~1)70;%(x~)- - Niog(o? )+ log(P(w,))
m This expression cannot be reduced further so

e The decision boundaries are quadratic: hyper-ellipses
e The loci of constant probability are hyper-spheres aligned with the feature axis
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Case 4: X.=c%l, example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

w=@B 2 w=[ 4 =2 5]

05 O 10 2 0
2, = 2, = 2, =
0 05 01 0 2
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Case 5: X #X general case

» We already derived the expression for the general case at the beginning of this discussion

1 _ 1
6,09 == (=1 Z(x~1)- log(Z)+log(P(w)))
¢ Reorganizing terms in a quadratic form yields

g,(X) = X "W.X + W] X+ W,

[ 1
W =-=-Y%1
I 2 2|
where <w, =Y
1 +«1 1
Wip = _Epi pIV! 'E|09qzi|)+|09(|3(wi))

e The loci of constant probability for each class are hyper-ellipses, oriented with the eigenvectors of X, for that
class

e The decision boundaries are again quadratic: hyper-ellipses or hyper-parabolloids

¢ Notice that the quadratic expression in the discriminant is proportional to the Mahalanobis distance using the
class-conditional covariance Z;
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Case 5: X #X, general case, example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

w=B 2  u=l5 4  p=[2 5

1 -1 1 -1 0.5 05
Zl = ZZ = Z3 =
-1 2 -1 7 05 3

Zoom =
out
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Conclusions

m From the previous examples we can extract the following conclusions
e The Bayes classifier for normally distributed classes (general case) is a quadratic classifier
e The Bayes classifier for normally distributed classes with equal covariance matrices is a
linear classifier
¢ The minimum Mahalanobis distance classifier is optimum for
= normally distributed classes and
= equal covariance matrices and
= equal priors
e The minimum Euclidean distance classifier is optimum for
= normally distributed classes and
= equal covariance matrices proportional to the identity matrix and
= equal priors
Both Euclidean and Mahalanobis distance classifiers are linear classifiers

m The goal of this discussion was to show that some of the most popular
classifiers can be derived from decision-theoretic principles and some
simplifying assumptions

e Itis important to realize that using a specific (Euclidean or Mahalanobis) minimum distance
classifier implicitly corresponds to certain statistical assumptions

e The question whether these assumptions hold or don’t can rarely be answered in practice; in
most cases we are limited to posting and answering the question “does this classifier solve
our problem or not?”
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