L5: Digital filters

Linear time invariant systems
Impulse response
Transfer function
Digital filter analysis
Example: speech synthesis

This lecture is based on chapter 10 of [Taylor, TTS synthesis, 2009]
Filters

A filter is a mathematical model of a system used for modifying signals

– In some applications, one is interested in “filtering out” unwanted portions of a signal
– Our interest in filters here comes from the acoustic theory of speech
 • According to the “source-filter” model, speech is a process by which a glottal source is modified by a vocal tract filter
Linear time invariant (LTI) filters

- A class of linear filters whose behavior does not change over time
 - Linearity implies that the filter meets the scaling and superposition properties
 \[x[n] \rightarrow y[n] \Rightarrow \alpha x_1[n] + \beta x_2[n] \rightarrow \alpha y_1[n] + \beta y_2[n] \]

- LTI filters are generally described in terms of difference equations

Types of LTI filters

- Finite impulse response (FIR)
 - Operate only on previous values of the input
 \[y[n] = \sum_{k=0}^{M} b_k x[n - k] \]

- Infinite impulse response (IIR)
 - Operate as well on previous values of the output
 \[y[n] = \sum_{k=0}^{M} b_k x[n - k] + \sum_{l=0}^{N} a_l y[n - l] \]
http://www.mikroe.com/eng/chapters/view/73/chapter-3-iir-filters/
The impulse response

– The properties of a filter in the time domain can be described by its response when the input is an impulse

\[\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases} \]

– Consider the IIR filter defined by \(y[n] = x[n] + 0.8y[n - 1] \)
 - Impulse response has no fixed duration (it is infinite, hence the name)
 - The response is an exponential decay controlled by \(a_1 = 0.8 \)
 - For \(a_1 > 1 \), output grows exponentially, and the filter is said to be unstable

– Now consider the IIR filter \(y[n] = -1.8y[n - 1] + y[n - 2] \)
 - In this case, the response has the shape of a sine wave

– Finally, consider the IIR filter \(y[n] = -1.78y[n - 1] + 0.9y[n - 2] \)
 - In this case, the response has the shape of a decaying sine wave, a mix of the previous two signals

– Thus, the response characteristics are entirely defined by the parameters of the filter
Example

```
ex5p1.m

- Generate example of IIR and FIR filters
- Show how the impulse response is infinite for IIR but finite for FIR
  (examples from Taylor §10.4.1-2)
```
The filter convolution sum

• If we know the impulse response \(h[n] \) of a filter, its response to any input sequence \(x[n] \) can be computed as

\[
y[n] = \sum_{k} x[k]h[n - k]
\]

The filter transfer function

– The impulse response describes the filter properties in the time domain
– We will now see how to describe the filter in the frequency domain
– Consider the generic IIR filter

\[
y[n] = b_0x[n] + b_1x[n - 1] + \cdots + b_Mx[n - M] + a_1y[n - 1] + a_2y[n - 2] + \cdots + a_Ny[n - N]
\]
– And let’s apply the Z transform

\[
Y(z) = b_0X(z) + b_1X(z)z^{-1} + \cdots + b_MX(z)z^{-M} + a_1Y(z)z^{-1} + \cdots + a_NY(z)z^{-N}
\]
which, grouping terms, can be expressed as

\[Y(z) = \frac{b_0 + b_1z^{-1} + \cdots + b_Mz^{M-1}}{1 - a_1z^{-1} - \cdots - a_Nz^{N-1}} X(z) \]

from which the transfer function of the filter can be defined as:

\[H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{l=0}^{N} a_l z^{-l}} \]

NOTES

- As we will see in the next few slides, the transfer function \(H(z) \) fully defines the filter’s characteristics in the frequency domain.
- It can be shown that the transfer function is the Z-transform of the impulse response \(H(z) = \sum h[k]z^{-k} \).
- The transfer function is a ratio of two polynomials whose coefficients are those of the difference equation.
Filter analysis and design

Filter analysis

– The coefficients of first order filters are readily interpretable, for example as the rates of decay of exponentials
– For higher-order filters, interpretation of the coefficients is very hard
– Instead, we employ polynomial analysis to produce an easier interpretation of the transfer function

Polynomial analysis and design

– Consider the quadratic expression $f(x) = 2x^2 - 6x + 1$
 • This equation can be factorized as $f(x) = G(x - q_1)(x - q_2)$, where (q_1, q_2) are the roots of the expression and G is the gain
 • The roots (q_1, q_2) are called the zeros because $f(q_i) = 0$

– Now consider the inverse filter function $f(x) = \frac{1}{2x^2 - 6x + 1}$
 • This curve is very different, and the function “blows up” at $x = \{q_1, q_2\}$
 • The roots (q_1, q_2) are called the poles ... maybe because they create a pole-like effect on the curve?
(b) plot of $g \times (2x^2 - 6x + 1)$ for different values of g

(a) plot of $1/(2x^2 - 6x + 1)$

[Taylor, 2009]
– We can now use polynomials to analyze our filter’s transfer function

– Consider the transfer function

\[H(z) = \frac{1}{z^2 - a_1 z - a_2} \]

– Since transfer functions are generally expressed in terms of \(z^{-1} \), we multiply numerator and denominator by \(z^{-2} \) to obtain

\[H(z) = \frac{z^{-2}}{1 - a_1 z^{-1} - a_2 z^{-2}} = G \frac{z^{-2}}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})} \]

– The figures in the next slide show the shape of the transfer function for \(a_1 = 1, a_2 = -0.5 \)

 • In this case the roots of the denominator are complex \(0.5 \pm j0.5 \)

 • Note how the shape of the filter can be described by the position of the poles in the Z plane; we do not need to plot \(|H(z)| \)
Taylor, 2009
– The same analysis can be extended to any LTI filter

\[H(z) = \frac{b_0 + b_1 z^{-1} + \cdots + b_M z^M}{1 - a_1 z^{-1} - \cdots - a_N z^N} \]

– By expressing it in terms of its factors

\[H(z) = \frac{(1 - q_1 z^{-1})(1 - q_2 z^{-1}) \cdots (1 - q_M z^{-1})}{(1 - p_1 z^{-1})(1 - p_2 z^{-1}) \cdots (1 - p_N z^{-1})} \]

– And then analyzing the position of its poles and zeros in the Z plane
Frequency interpretation of $H(z)$

- Recall that the z transform for the digital signal $x[n]$ is
 \[X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \]

- And that its Fourier transform is obtained by making $z = e^{j\hat{\omega}}$
 \[X(e^{j\hat{\omega}}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\hat{\omega}n} \]

- Therefore, you can find the frequency response by substituting $\hat{\omega}$ with the frequency of interest

 - Since $e^{j\hat{\omega}}$ is unit length, this can be thought of as sweeping out a circle of radius 1 in the z-domain

 - This is consistent with the fact that the spectrum $X(e^{j\hat{\omega}})$ is periodic with period $\hat{\omega} = 2\pi$
[Taylor, 2009]
Filter characteristics

– Consider the following first-order IIR filter

\[h[n] = b_0 x[n] - a_1 y[n - 1] \]

\[H(z) = \frac{b_0}{1 - a_1 z^{-1}} = \frac{b_0}{1 - a_1 e^{-j\omega}} \]

– The figures in the next page show the time- and frequency domain response, pole locations and pole locations in the z-domain for \(b_0 = 1 \) and \(a_1 = \{0.8, 0.7, 0.6, 0.4\} \)

 • This type of filter is known as a resonator, and the peak is known as a resonance because frequencies near that peak are amplified by the filter

– Analysis

 • As the length of the decay increases, the peak becomes sharper
 • Large \(a_1 \) corresponds to slow decays and narrow bandwidths
 • Small \(a_1 \) corresponds to fast decays and broad bandwidths
Resonances are generally described by three properties: amplitude, frequency, and bandwidth

- The radius of the pole controls the amplitude and bandwidth
- The angle of the pole controls the frequency; in this case $\hat{\omega} = 0$ since the pole lies on the real line

In order to model speech resonances at non-zero frequencies, we then move the pole away from the real axis

- This will result in a complex pole $p_1 = re^{j\theta} = \alpha + j\beta$, which leads to a complex filter coefficient a_1; see next slide
- For this reason, we introduce complex-conjugate pairs of poles $re^{\pm j\theta}$

$$H(z) = \frac{1}{(1 - re^{j\theta}z^{-1})(1 - re^{-j\theta}z^{-1})} = \frac{1}{1 - 2rcos(\theta)z^{-1} + r^2z^{-1}}$$

Examples for various pole positions are shown in the next slide

- For constant θ, the filter becomes sharper as $r \to 1$
 - For small r, the skirts of the two poles overlap and shift the resonance
- For constant r, resonances move away from $\hat{\omega} = 0$ as $\theta \to 1$
\[
\begin{array}{|c|c|c|c|c|}
\hline
\theta & p_1 & p_2 & a_1 & a_2 \\
\hline
0.9 & 1.0 & 0.48 + 0.75j & 0.48 - 0.75j & 0.97 -0.81 \\
0.8 & 1.0 & 0.43 + 0.67j & 0.43 - 0.67j & 0.86 -0.64 \\
0.7 & 1.0 & 0.38 + 0.59j & 0.38 - 0.59j & 0.75 -0.48 \\
0.6 & 1.0 & 0.32 + 0.51j & 0.32 - 0.51j & 0.65 -0.36 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\theta & p_1 & p_2 & a_1 & a_2 \\
\hline
0.8 & 0.75 & 0.58+0.54j & 0.58-0.54j & 1.17, -0.64 \\
0.8 & 1.0 & 0.43+0.67j & 0.43-0.67j & 0.86 -0.64 \\
0.8 & 1.25 & 0.25+0.76j & 0.25-0.76j & 0.50 -0.64 \\
0.8 & 1.5 & 0.056+0.78j & 0.05-0.78j & 0.11 -0.64 \\
\hline
\end{array}
\]

[Taylor, 2009]
- Effect of zeros
 - Adding a term $b_1 = 1$ places a zero at the origin
 - Adding a term $b_1 = -1$ places a zero at the ends of the spectrum
- Thus, zeros add anti-resonances to the spectrum

\[b_1 = 1 \]
\[b_1 = -1 \]
– Thus, we can build any transfer function by placing poles and zeros at the appropriate locations and then multiplying their transfer functions.

– Note, though, that poles that are close together will interact, so the final resonances of a system cannot always be predicted from their poles.
Example

Let’s now use an LTI filter to synthesize English vowel [ih]

– Remember that normal frequency F (Hz) can be converted into normalized frequency $\hat{\omega} = \frac{2\pi F}{F_S}$

– From this expression we can calculate pole positions as

$$\theta = \frac{2\pi F}{F_S}$$

$$r = e^{-\pi B/F_S}$$

– From acoustic phonetics, we can estimate formant values for [ih] to be

{F₁, F₂, F₃} = {300Hz, 2200Hz, 3000Hz}

– Formant bandwidths are harder to measure, so we assume all three to be equal to $B = 250Hz$

– Assuming a sampling frequency of $F_S = 16kHz$, this results in

<table>
<thead>
<tr>
<th>Formant</th>
<th>Frequency (Hz)</th>
<th>Bandwidth (Hz)</th>
<th>r</th>
<th>θ (normalised angular frequency)</th>
<th>pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁</td>
<td>300</td>
<td>250</td>
<td>0.95</td>
<td>0.12</td>
<td>0.963 + 0.116j</td>
</tr>
<tr>
<td>F₂</td>
<td>2200</td>
<td>250</td>
<td>0.95</td>
<td>0.86</td>
<td>0.619 + 0.719j</td>
</tr>
<tr>
<td>F₃</td>
<td>3000</td>
<td>250</td>
<td>0.95</td>
<td>1.17</td>
<td>0.370 + 0.874j</td>
</tr>
</tbody>
</table>
The transfer function for each formant can be estimated as

\[H_n(z) = \frac{1}{(1 - p_n z^{-1})(1 - p_n^* z^{-1})} \]

And the complete vocal tract TF can be estimated by multiplication

\[H(z) = H_1(z)H_2(z)H_3(z) \]
Example

ex5p2.m
Synthesize speech sample using the previous vocal tract filter and a pulse train as glottal excitation