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Abstract. A non-linear classification technique based on Fisher9s 
discriminant is proposed. The main ingredient is the kernel trick 
which allows the efficient computation of Fisher discriminant in 
feature space. The linear classification in feature space corresponds 
to a (powerful) non-linear decision function in input space. Large 
scale simulations demonstrate the competitiveness of our approach. 

DISCRIMINANT ANALYSIS 

In classification and other data analytic tasks it is often necessary to utilize 
pre-processing on the data before applying the algorithm at hand and it is 
common to first extract features suitable for the task to solve. 

Feature extraction for classification differs significantly from feature ex- 
traction for describing data. For example PCA finds directions which have 
minimal reconstruction error by describing as much variance of the data as 
possible with m orthogonal directions. Considering the first directions they 
need not (and in practice often will not) reveal the class structure that we 
need for proper classification. Discriminant analysis addresses the following 
question: Given a data set with two classes, say, which is the best feature 
or feature set (either linear or non-linear) to discriminate the two classes? 
Classical approaches tackle this question by starting with the (theoretically) 
optimal Bayes classifier and, by assuming normal distributions for the classes, 
standard algorithms like quadratic or linear discriminant analysis, among 
them the famous Fisher discriminant, can be derived (e.g. [5]). Of course any 
other model different from a Gaussian for the class distributions could be as- 
sumed, this, however, often sacrifices the simple closed form solution. Several 
modifications towards more general features have been proposed (e.g. [SI); for 
an introduction and review on existing methods see e.g. [3, 5, 8, 111. 

In this work we propose to use the kernel idea [l], originally applied in 
Support Vector Machines [19, 14]), kernel PCA [16] and other kernel based 
algorithms (cf. [14]) to define a non-linear generalization of Fisher’s dis- 
criminant. Our method uses kernel feature spaces yielding a highly flexible 
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algorithm which turns out to be competitive with Support Vector Machines. 
Note that there exists a variety of methods called Kernel Discriminant 

Analysis [8]. Most of them aim at replacing the parametric estimate of class 
conditional distributions by a non-parametric kernel estimate. Even if our 
approach might be viewed in this way too, it is important to note that it goes 
one step further by interpreting the kernel as a dot-product in another space. 
This allows a theoretically sound interpretation together with an appealing 
closed form solution. 

In the following we will first review Fisher’s discriminant, apply the kernel 
trick, then report classification results and finally present our conclusions. In 
this paper we will focus on two-class problems only and discriminants linear 
in the feature space. 

FISHER’S LINEAR DISCRIMINANT 

Let X I  = { x i , .  . . , x i , }  and X2 = { x f ,  . . ~ , x ; ~ }  be samples from two differ- 
ent classes and with some abuse of notation X = X I  U X2 = { X I , .  . . , x t } .  
Fisher’s linear discriminant is given by the vector w which maximizes 

WTSBW 

wTSww 
J(w) = 

where 

SW := ( x - m , ) ( x - m i ) T  
i = 1 , 2  e € X ;  

(3) 

are the between and within class scatter matrices respectively and mi is 
defined by m, := $ C$, x i .  The intuition behind maximizing J(w) is to 
find a direction which maximizes the projected class means (the numerator) 
while minimizing the classes variance in this direction (the denominator). 
But there is also a well known statistical way to motivate (1): 

Connection to the optimal linear Bayes classifier: The optimal Bayes 
classifier compares the a posteriori probabilities of all classes and assigns a 
pattern to the class with the maximal probability (e.g. [5]). However, the a- 
posteriori probabilities are usually unknown and have to be estimated from a 
finite sample. For most classes of distributions this is a difficult task and often 
it is impossible to get a closed form estimate. However, by assuming normal 
distributions for all classes, one arrives at quadratic discriminant analysis 
(which essentially .measures the Mahalanobis distance of a pattern towards 
the class center). Simplifying the problem even further and assuming equal 
covariance structure for all classes, quadratic discriminant analysis becomes 
linear. For two-class problems it is easy to show that the vector w maxi- 
mizing ( 1 )  is in the same direction as the discriminant in the corresponding 
Bayes optimal classifier. Although relying on heavy assumptions which are 
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not true in many applications, Fisher’s linear discriminant has proven very 
powerful. One reason is certainly that a linear model is rather robust against 
noise and most likely will not overfit. Crucial, however, is the estimation of 
the scatter matrices, which might be highly biased. Using simple “plug-in” 
estimates as in (2) when the number of samples is small compared to the 
dimensionality will result in a high variability. Different ways to  deal with 
such a situation by regularization have been proposed (e.g. [4, 71) and we will 
return to this topic later. 

FISHER’S DISCRIMINANT IN THE FEATURE SPACE 

Clearly, for most real-world data a linear discriminant is not complex enough. 
To increase the expressiveness of the discriminant we could either try to use 
more sophisticated distributions in modeling the optimal Bayes classifier or 
look for non-linear directions (or both). As pointed out before, assuming 
general distributions will cause trouble. Here we restrict ourselves to finding 
non-linear directions by first mapping the data non-linearly into some feature 
space F and computing Fisher’s linear discriminant there, thus thus implicitly 
yielding a non-linear discriminant in input space. 

Let 9 be a non-linea mapping to some feature space 7. To find the 
linear discriminant in T we need to maximize 

where now w E 3 and 5’: and S$ are the corresponding matrices in F, i.e. 

Sz := (m: - m;)(m: - m;)T and 

S$ := (a(=) - m’)(@(z) - m’lT 
i=1,2 X E X i  

with rnt := & 9(zj). 

Introducing kernel functions: Clearly, if .F is very high- or even infinitely 
dimensional this will be impossible to solve directly. To overcome this limita- 
tion we use the same trick as in Kernel PCA [16] or Support Vector Machines. 
Instead of mapping the data explicitely we seek a formulation of the algo- 
rithm which uses only dot-products (@(z) @(y)) of the training patterns. 
As we are then able to compute these dot-products efficiently we can solve 
the original problem without ever mapping explicitely to F. This can be 
achieved using Mercer kernels (e.g. [12]): these kernels k(z, y) compute a 
dot-product in some feature space F, i.e. k(z,y) = (@(z) @(y)). Possible 
choices for k which have proven useful e.g. in Support Vector machines or 
Kernel PCA are Gaussian RBF, k(z,y) = exp(-l)a: - y1I2/c), or polynomial 
kernels, k(z, y) = (z . y ) d ,  for some positive constants c and d respectively. 

To find Fisher’s discrimiiiant in the feature space F, we first need a formu- 
lation of (4) in terms of only dot products of input patterns which we then 
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replace by some kernel function. From the theory of reproducing kernels we 
know that any solution w E 3 must lie in the span of all training samples in 
F. Therefore we can find an expansion for w of the form 

1 e 
w = " i i P ( 2 i )  

i=l 

Using the expansion ( 5 )  and the definition of rnf we write 

( 5 )  

where we defined (Mi)j  := 6 k ( q ,  2:. and replaced the dot products 
by the kernel function. Now consider the numerator of (4). Be using the 
definition of Sz and (6) it can be rewritten as 

wTS:w = a T M a  (7) 

where M := ( M I  - Mz)(M1 - M z ) ~ .  Considering the denominator, using 
( 5 ) ,  the definition of mf and a similar transformation as in (7) we find: 

wTS$w = a T N a  (8 )  

where we set N := Cj=1,2Kj(I  - lej)KjTy Kj is a l x t j  matrix with 
(Kj)nm := k(xn,xk) (this is the kernel matrix for class j ) ,  I is the iden- 
tity and l t j  the matrix with all entries l/tj. 

Combining (7) and (8) we can find Fisher's linear discriminant in F by 
maximizing 

& M a  J(a) = - a T N a  (9) 

This problem can be solved (analogously to the algorithm in the input space) 
by finding the leading eigenvector of N - l M .  We will call this approach (non- 
linear) Kernel Fisher Discriminant (KFD). The projection of a new pattern 
x onto w is given by 

e 
(w . @(x)) = ai k(Zi, 2). 

i=l 

Numerical issues and regularization: Obviously, the proposed setting is 
ill-posed: we are estimating L dimensional covariance structures from t sam- 
ples. Besides numerical problems which cause the matrix N not to be posi- 
tive, we need a way of capacity control in 3. To this end, we simply add a 
multiple of the identity matrix to N .  i.e. replace N by N,, where 
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This can be viewed in different ways: (i) it clearly makes the problem nu- 
merically more stable, as for p large enough No will become positive definite; 
(ii) it can be 'seen in analogy to [4], decreasing the bias in sample based es- 
timation of eigenvalues; (iii) it imposes a regularization on Ilal12 (remember 
that we are maximizing (9)), favoring solutions with small expansion coeffi- 
cients. Although the real influence in this setting of the regularization is not 
yet fully understood, it shows connections to those used in Support Vector 
Machines (see also [14]). Furthermore, one might use other regularization 
type additives to  N ,  e.g. penalizing l l ' ~ ) 1 1 ~  in analogy to SVM (by adding the 
full kernel matrix Kij = k(zi, zj)). 

EXPERIMENTS 

Figure 1 shows an illustrative comparison of the feature found by KFD and 
the first and second (non-linear) feature found by Kernel PCA [16] on a toy 
data set. For both we used a polynomial kernel of degree two and for KFD 
the regularized within class scatter (11) where p = Depicted are the 
two classes (crosses and dots), the feature value (indicated by grey level) 
and contour lines of identical feature value. Each class consists of two noisy 
parabolic shapes mirrored at the x and 9 axis respectively. We see, that the 
KFD feature discriminates the two classes in a nearly optimal way, whereas 
the Kernel PCA features, albeit describing interesting properties of the data 
set, do not separate the two classes well (although higher order Kernel PCA 
features might be discriminating, too). 

To evaluate the performance of our new approach we performed an ex- 
tensive comparison to other state-of-the-art classifiers. The experimental 
setup was chosen in analogy to [lo] and we compared the Kernel Fisher Dis- 
criminant to  AdaBoost, regularized AdaBoost (also [lo]) and Support Vector 
Machines (with Gaussian kernel). For KFD we used Gaussian kernels, too, 
and the regularized within-class scatter from (11). After the optimal direc- 
tion 'U) E T was found, we computed projections onto it by using (10). To 
estimate an optimal threshold on the extracted feature, one may use any 
classification technique, e.g. as simple as fitting a sigmoid [9]. Here we used a 
linear Support Vector Machine (which is optimized by gradient descent as we 

Figure 1: Comparison of feature found by KFD (left) and those found by Kernel 
PCA: first (middle) and second (right); details see text. 
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Table 1: Comparison between KFD, a single RBF classifier, AdaBoost (AB), reg- 
ularized AdaBoost (ABR) and Support Vector Machine (SVM) (see text). Best 
method in bold face. second best emDhasized. 

Banana 
B.Cancer 
Diabetes 
German 
Heart 
Image 
Ringnorm 
FSonar 
Splice 
Thyroid 
Titanic 
Twonorm 
Waveform 

RBF 
10.8f0.6 
27.6f4.7 
24.3f1.9 
24.7f2.4 
17.6f3.3 
3.3f0.6 
1.7f0.2 

34.4f2.0 
10. of 1.0 

4.5f2.1 
23.3f1.3 
2.9f0.3 

10 .7f l . l  

AB 
12.3f0.7 
30.4f4.7 
26.5f2.3 
27.5f2.5 
20.3f3.4 
2.7f0.7 
1.9f0.3 

35.7f1.8 
10.1f0.5 

22.6f 1. 2 
3.0f0.3 

10.8f0.6 

4 . 4 ~ .  2 

ABR 
10.9zt0.4 
26.5f4.5 
23.8f1.8 
24.352.1 
16.5f3.5 
2.7f0.6 
1.6f 0.1 

34.2f2.2 
9.5f0.7 
4.6f2.2 

22.6f 1.2 
2.7f 0.2 
9.8f0.8 

SVM 
11.5f0.7 
26.Ozt4.7 
23.5f 1.7 

23.6f2.1 
16.0f3.3 

3.of0.6 
1.7f0.1 

32.4f1.8 
10.9f0.7 
4.8f2.2 

22.4f1.0 
3.0f0.2 
9.9zto.4 

KFD 
10.8f0.5 
25.8f4.6 
23.2f1.6 
23.731 2.2 
16.1 f 3.4 
4.8f0.6 

1 .5f0 .1  
33 .2 f l . 7  
10.5f0.6 
4 .2f2 .1  
23.2f2.0 
2.6f0.2 
9.9zt0.4 

only have l-d samples). A drawback of this, however, is that we have another 
parameter to control, namely the regularization constant in the SVM. 

We used 13 artificial and real world datasets from the UCI, DELVE and 
STATLOG benchmark repositories (except for banana).'l The problems which 
are not binary were partitioned into two-class problems. Then 100 partitions 
into test and training set (about 60%:40%) were generated. On each of 
these data sets we trained and tested all classifiers (see [lo] for details). 
The results in table 1 show the average test error over these 100 runs and 
the standard deviation. To estimate the necessary parameters we ran 5-fold 
cross validation on the first five realizations of the training sets and took the 
model parameters to be the median over the five estimates.2 

Furthermore, we conducted preliminary experiments with KFD on the 
USPS dataset of handwritten digits where we restricted the expansion of w 
in (5) to run only over the first 3000 training samples. We achieved a 10- 
class error of 3.7% with a Gaussian kernel of width 0.3.256, which is slightly 
superior to a SVM with Gaussian kernel (4.2% [13]). 

Experimental results: The experiments show that the Kernel Fisher Dis- 
criminant (plus a Support Vector Machine to estimate the threshold) is com- 
petitive or in some cases even superior to the other algorithms on almost all 
data sets (an exception being image). Interestingly, both SVM and KFD 
construct an (in some sense) optimal hyperplane in F, while we notice that 
the one given by the solution w of KFD is often superior to the one of SVM. 

'The breast cancer domain was obtained from the University Medical Center, Inst. of 
Oncology, Ljubljana, Yugoslavia. Thanks to M. Zwitter and M. Soklic for the data. 

21n fact we did two such runs, first with a coarse and then with a finer stepping over 
parameter space. The data sets can be obtained via http: //m.first .gmd.de/'raetsch/. 
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DISCUSSION AND CONCLUSIONS 

Fisher’s discriminant is one of the standard linear techniques in statistical 
data analysis. However, linear methods are often too limited and there have 
been several approaches in the past to derive more general class separability 
criteria (e.g. [6, 8, 51). Our approach is very much in this spirit, however, due 
to  the fact that we are computing the discriminant function in some feature 
space F (which is non-linearly related to input space), we are still able to 
find closed form solutions and maintain the theoretical beauty of Fisher’s 
discriminant analysis. Furthermore different kernels allow for high flexibility 
due to the wide range of non-linearities possible. 

Our experiments show that KFD is competitive to  other state of the art 
classification techniques. Furthermore, there is still much room for extensions 
and further theory as linear discriminant analysis is an intensively studied 
field and many ideas previously developed in the input space carry over to 
feature space. 

Note that while the complexity of SVMs scales with the number of Sup- 
port Vectors, KFD does not have a notion of SVs and its complexity scales 
with the number of training patterns. On the other hand, we speculate, that 
some of the superior performance of KFD over SVM might be related to the 
fact, that KFD uses all training samples in the solution, not only the difficult 
ones, i.e. the Support Vectors. 

Future work will be dedicated to finding suitable approximation schemes 
(e.g. [2, 151) and numerical algorithms for obtaining the leading eigenvectors 
of large matrices. Further fields of study will include the construction of 
multi-class discriminants, a theoretical analysis of generalization error bounds 
of KFD, and the investigation of the connection between KFD and Support 
Vector Machines (cf. [18, 171). 
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