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L23: hidden Markov models 

• Discrete Markov processes 

• Hidden Markov models 

• Forward and Backward procedures 

• The Viterbi algorithm 

 

This lecture is based on [Rabiner and Juang, 1993] 
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Introduction 
• The next two lectures in the course deal with the recognition of 

temporal or sequential patterns 
– Sequential pattern recognition is a relevant problem in several disciplines 

• Human-computer interaction: Speech recognition 
• Bioengineering: ECG and EEG analysis 
• Robotics: mobile robot navigation 
• Bioinformatics: DNA base sequence alignment  

• A number of approaches can be used to perform time series 
analysis 
– Tap delay lines can be used to form a feature vector that captures the 

behavior of the signal during a fixed time window 
• This represents a form of “short-term” memory  
• This simple approach is, however, limited by the finite length of the delay line 

– Feedback connections can be used to produce recurrent MLP models 
• Global feedback allows the model to have “long-term” memory capabilities  
• Training and using recurrent networks is, however, rather involved and outside 

the scope of this class (refer to [Principe et al., 2000; Haykin, 1999]) 

– Instead, we will focus on hidden Markov models, a statistical approach 
that has become the “gold standard” for time series analysis  
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Discrete Markov Processes 

• Consider a system described by the following process 
– At any given time, the system can be in one of 𝑁 possible states 
𝑆 = 𝑆1, 𝑆2…𝑆𝑁  

– At regular times, the system undergoes a transition to a new state 

– Transition between states can be described probabilistically 

• Markov property 
– In general, the probability that the system is in state 𝑞𝑡 = 𝑆𝑗  is a 

function of the complete history of the system 

– To simplify the analysis, however, we will assume that the state of the 
system depends only on its immediate past 

𝑃 𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖 , 𝑞𝑡−2 = 𝑆𝑘 … = 𝑃 𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖  

– This is known as a first-order Markov Process 

– We will also assume that the transition probability between any two 
states is independent of time 

𝑎𝑖𝑗 = 𝑃 𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖   𝑠. 𝑡.  
𝑎𝑖𝑗 ≥ 0 

 𝑎𝑖𝑗
𝑁
𝑗=1 = 1
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• Example 
– Consider a simple three-state Markov model of the weather 

– Any given day, the weather can be described as being  

• State 1: precipitation (rain or snow) 

• State 2: cloudy 

• State 3: sunny 

– Transitions between states are described by the transition matrix 

 𝐴 = 𝑎𝑖𝑗 =
0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8
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– Question 

• Given that the weather on day t=1 is sunny, what is the probability that 
the weather for the next 7 days will be “sun, sun, rain, rain, sun, clouds, 
sun” ? 

• Answer: 

 
𝑃 𝑆3, 𝑆3, 𝑆3, 𝑆1, 𝑆1, 𝑆3, 𝑆2, 𝑆3|𝑚𝑜𝑑𝑒𝑙
= 𝑃 𝑆3 𝑃 𝑆3|𝑆3 𝑃 𝑆3|𝑆3 𝑃 𝑆1|𝑆3 𝑃 𝑆1|𝑆1 𝑃 𝑆3|𝑆1 𝑃 𝑆2|𝑆3 𝑃 𝑆3|𝑆2
= 𝜋3𝑎33𝑎33𝑎13𝑎11𝑎31𝑎23𝑎32
= 1 × 0.8 × 0.8 × 0.1 × 0.4 × 0.3 × 0.1 × 0.2 

 

– Question 

• What is the probability that the weather stays in the same known state Si 
for exactly T consecutive days? 

• Answer: 

 

𝑃 𝑞𝑡 = 𝑆𝑖 , 𝑞𝑡+1 = 𝑆𝑖 …𝑞𝑡+𝑇 = 𝑆𝑗≠𝑖 = 𝑎𝑖𝑖
𝑇−1 1 − 𝑎𝑖𝑖  
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Hidden Markov models 

• Introduction 
– The previous model assumes that each state can be uniquely 

associated with an observable event 

• Once an observation is made, the state of the system is then trivially 
retrieved 

• This model, however, is too restrictive to be of practical use for most 
realistic problems 

– To make the model more flexible, we will assume that the outcomes or 
observations of the model are a probabilistic function of each state 

• Each state can produce a number of outputs according to a unique 
probability distribution, and each distinct output can potentially be 
generated at any state 

• These are known a Hidden Markov Models (HMM), because the state 
sequence is not directly observable, it can only be approximated from the 
sequence of observations produced by the system 



Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 7 

• The coin-toss problem 
– To illustrate the concept of an HMM, consider the following scenario 

• You are placed in a room with a curtain 

• Behind the curtain there is a person performing a coin-toss experiment 

• This person selects one of several coins, and tosses it: heads (H) or tails (T) 

• She tells you the outcome (H,T), but not which coin was used each time 

– Your goal is to build a probabilistic model that best explains a 
sequence of observations 𝑂 = 𝑜1, 𝑜2, 𝑜3… = 𝐻, 𝑇, 𝑇, 𝐻 …  

• The coins represent the states; these are hidden because you do not 
know which coin was tossed each time 

• The outcome of each toss represents an observation 

• A “likely” sequence of coins may be inferred from the observations, but 
this state sequence will not be unique 

– If the coins are hidden, how many states should the HMM have? 
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– One-coin model 
• In this case, we assume that the person behind 

the curtain only has one coin 

• As a result, the Markov model is observable 
since there is only one state 

• In fact, we may describe the system with a 
deterministic model where the states are the 
actual observations (see figure) 

• In either case, the model parameter P(H) may 
be found from the ratio of heads and tails 

– Two-coin model 
• A more sophisticated HMM would be to 

assume that there are two coins 
– Each coin (state) has its own distribution of 

heads and tails, to model the fact that the coins 
may be biased 

– Transitions between the two states model the 
random process used by the person behind the 
curtain to select one of the coins 

• The model has 4 free parameters 

[Rabiner, 1989] 
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– Three-coin model 

• In this case, the model would have three 
separate states 

– This HMM can be interpreted in a similar 
fashion as the two-coin model 

• The model has 9 free parameters 

 

 
– Which of these models is best? 

• Since the states are not observable, the best 
we can do is select the model that best 
explains the data (e.g., using a Maximum 
Likelihood criterion) 

• Whether the observation sequence is long 
and rich enough to warrant a more complex 
model is a different story, though 

 

[Rabiner, 1989] 
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• The urn-ball problem 
– To further illustrate the concept of an HMM, consider this scenario 

• You are placed in the same room with a curtain 

• Behind the curtain there are N urns, each containing a large number of 
balls from M different colors 

• The person behind the curtain selects an urn according to an internal 
random process, then randomly grabs a ball from the selected urn 

• He shows you the ball, and places it back in the urn 

• This process is repeated over and over 

– Questions 

• How would you represent this experiment with an HMM? What are the 
states? Why are the states hidden? What are the observations? 

Urn 1 Urn 2 Urn N 
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• Elements of an HMM 
– An HMM is characterized by the following set of parameters 

• 𝑁, the number of states in the model 𝑆 = 𝑆1, 𝑆2…𝑆𝑁  

• 𝑀, the number of discrete observation symbols 𝑉 = 𝑣1, 𝑣2…𝑣𝑀  

• 𝐴 = 𝑎𝑖𝑗 , the state transition probability  

𝑎𝑖𝑗 = 𝑃 𝑞𝑡+1 = 𝑆𝑗|𝑞𝑡 = 𝑆𝑖  

• 𝐵 = 𝑏𝑗 𝑘 , the observation or emission probability distribution  

𝑏𝑗 𝑘 = 𝑃 𝑜𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑆𝑗  

• 𝜋, the initial state distribution 

𝜋𝑗 = 𝑃 𝑞1 = 𝑆𝑗  

– Therefore, an HMM is specified by two scalars (𝑁 and 𝑀) and three 
probability distributions (𝐴,𝐵, and 𝜋) 

• In what follows, we will represent an HMM by the compact notation 
𝜆 = 𝐴, 𝐵, 𝜋  
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• HMM generation of observation sequences  
– Given a completely specified HMM 𝜆 = 𝐴, 𝐵, 𝜋 , how can an 

observation sequence 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4, … } be generated? 

1. Choose an initial state 𝑆1 according to the initial state distribution 𝜋 

2. Set 𝑡 = 1 

3. Generate observation 𝑜𝑡 according to the emission probability 𝑏𝑗(𝑘) 

4. Move to a new state 𝑆𝑡+1according to state-transition at that state 𝑎𝑖𝑗 

5. Set 𝑡 = 𝑡 + 1 and return to 3 until 𝑡 ≥ 𝑇 

– Example 

• Generate an observation sequence with 𝑇 = 5 for a coin tossing 
experiment with three coins and the following probabilities 

 
𝑺𝟏 𝑺𝟐 𝑺𝟑

𝑷 𝑯 0.5 0.75 0.25
𝑷 𝑻 0.5 0.25 0.75

        𝐴 = 𝑎𝑖𝑗 =
1

3
∀𝑖, 𝑗       𝜋 = 𝜋𝑖 =

1

3
 ∀𝑖 
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• The three basic HMM problems 
– Problem 1: Probability Evaluation 

• Given observation sequence 𝑂 = 𝑜1, 𝑜2, 𝑜3…  and model 𝜆 = 𝐴, 𝐵, 𝜋 , 
how do we efficiently compute 𝑃 𝑂|𝜆 , the likelihood of the observation 
sequence given the model? 

– The solution is given by the Forward and Backward procedures 

– Problem 2: Optimal State Sequence 

• Given observation sequence 𝑂 = 𝑜1, 𝑜2, 𝑜3…  and model 𝜆, how do we 
choose a state sequence 𝑄 = 𝑞1, 𝑞2, 𝑞3…  that is optimal (i.e., best 
explains the data)? 

– The solution is provided by the Viterbi algorithm 

– Problem 3: Parameter Estimation 

• How do we adjust the parameters of the model 𝜆 = 𝐴, 𝐵, 𝜋  to maximize 
the likelihood 𝑃 𝑂|𝜆  

– The solution is given by the Baum-Welch re-estimation procedure 
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Forward and Backward procedures 

• Problem 1: Probability Evaluation 
– Our goal is to compute the likelihood of an observation sequence 
𝑂 = 𝑜1, 𝑜2, 𝑜3…  given a particular HMM model 𝜆 = 𝐴, 𝐵, 𝜋  

– Computation of this probability involves enumerating every possible 
state sequence and evaluating the corresponding probability 

𝑃 𝑂|𝜆 = 𝑃 𝑂|𝑄, 𝜆 𝑃 𝑄|𝜆

∀𝑄

  

– For a particular state sequence 𝑄 = 𝑞1, 𝑞2, 𝑞3… , 𝑃 𝑂|𝑄, 𝜆  is 

𝑃 𝑂|𝑄, 𝜆 = 𝑃 𝑜𝑡|𝑞𝑡, 𝜆 =
𝑇

𝑡=1
 𝑏𝑞𝑡 𝑜𝑡

𝑇

𝑡=1
 

– The probability of the state sequence 𝑄 is  
𝑃 𝑄|𝜆 = 𝜋𝑞1𝑎𝑞1𝑞2𝑎𝑞2𝑞3 …𝑎𝑞𝑇−1𝑞𝑇  

– Merging these results, we obtain 

𝑃 𝑂|𝜆 =  𝜋𝑞1𝑏𝑞1 𝑜𝑞1  𝑎𝑞1𝑞2𝑏𝑞2 𝑜𝑞2 …𝑎𝑞𝑇−1𝑞𝑇𝑏𝑞𝑇 𝑜𝑞𝑇
𝑞1,𝑞2…𝑞𝑇
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– Computational complexity 

• With  𝑁𝑇possible state sequences, this approach becomes unfeasible 
even for small problems… sound familiar? 

– For 𝑁 = 5 and 𝑇 = 100, the order of computations is in the order of 1072 

• Fortunately, the computation of 𝑃 𝑂|𝜆  has a lattice (or trellis) structure, 
which lends itself to a very efficient implementation known as the 
Forward procedure 

[Rabiner, 1989] 
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• The Forward procedure 
– Consider the following variable 𝛼𝑡 𝑖  defined as 

𝛼𝑡 𝑖 = 𝑃 𝑜1, 𝑜2…𝑜𝑡, 𝑞𝑡 = 𝑆𝑖|𝜆  

• which represents the probability of the observation sequence up to time 𝑡 
AND the state 𝑆𝑖  at time 𝑡, given model 𝜆 

– Computation of this variable can be efficiently performed by induction 

• Initialization:  𝛼1 𝑖 = 𝜋𝑖𝑏𝑖 𝑜1  

• Induction:  𝛼𝑡+1 𝑗 =  𝛼𝑡 𝑖 𝑎𝑖𝑗
𝑁
𝑖=1 𝑏𝑗 𝑜𝑡+1     

1 ≤ 𝑡 ≤ T − 1 
1 ≤ 𝑗 ≤ 𝑁

 

• Termination:  𝑃 𝑂|𝜆 =  𝛼𝑇 𝑖𝑁
𝑖=1  

 
 

• As a result, computation of 𝑃 𝑂|𝜆  can be  
reduced from 2𝑇 × 𝑁𝑇 down to 𝑁2 × T  
operations (from 1072 to 3000  
for 𝑁 = 5, 𝑇 = 100) 

[Rabiner, 1989] 
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• The Backward procedure 

– Analogously, consider the backward variable 𝛽𝑡 𝑖  defined as 

𝛽𝑡 𝑖 = 𝑃 𝑜𝑡+1, 𝑜𝑡+2…𝑜𝑇|𝑞𝑡 = 𝑆𝑖 , 𝜆  

– 𝛽𝑡 𝑖  represents the probability of the partial observation sequence 
from 𝑡 + 1 to the end, given state 𝑆𝑖  at time 𝑡 and model 𝜆 

• As before, 𝛽𝑡 𝑖  can be computed through induction 

• Initialization:  𝛽𝑇 𝑖 = 1 (arbitrarily) 

• Induction: 𝛽𝑡 𝑖 =  𝑎𝑖𝑗𝑏𝑗 𝑜𝑡+1 𝛽𝑡+1 𝑗𝑁
𝑗=1     

𝑡 = 𝑇 − 1, 𝑇 − 2…1
1 ≤ 𝑖 ≤ 𝑁

 

 

– Similarly, this computation can be  
effectively performed in the order  

 of 𝑁2 × 𝑇 operations 
 

 

 
[Rabiner, 1989] 
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The Viterbi algorithm 

• Problem 2: Optimal State Sequence 
– Finding the optimal state sequence is more difficult problem that the 

estimation of 𝑃 𝑂|𝜆  

– Part of the issue has to do with defining an optimality measure, since 
several criteria are possible 

• Finding the states 𝑞𝑡that are individually more likely at each time 𝑡 

• Finding the single best state sequence path (i.e., maximize the posterior 
𝑃 𝑂|𝑄, 𝜆  

– The second criterion is the most widely used, and leads to the well-
known Viterbi algorithm 

• However, we first optimize the first criterion as it allows us to define a 
variable that will be used later in the solution of Problem 3 
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– As in the Forward-Backward procedures, we define a variable 𝛾𝑡 𝑖  

𝛾𝑡 𝑖 = 𝑃 𝑞𝑡 = 𝑆𝑖|𝑂, 𝜆  

• which represents the probability of being in state 𝑆𝑖  at time 𝑡, given the 
observation sequence 𝑂 and model  

– Using the definition of conditional probability, we can write  

𝛾𝑡 𝑖 = 𝑃 𝑞𝑡 = 𝑆𝑖|𝑂, 𝜆 =
𝑃 𝑂, 𝑞𝑡 = 𝑆𝑖|𝜆

𝑃 𝑂|𝜆
=

𝑃 𝑂, 𝑞𝑡 = 𝑆𝑖|𝜆

 𝑃 𝑂, 𝑞𝑡 = 𝑆𝑖|𝜆
𝑁
𝑖=1

 

– Now, the numerator of 𝛾𝑡 𝑖  is equal to the product of 𝛼𝑡 𝑖  and 𝛽𝑡 𝑖  

𝛾𝑡 𝑖 =
𝑃 𝑂, 𝑞𝑡 = 𝑆𝑖|𝜆

 𝑃 𝑂, 𝑞𝑡 = 𝑆𝑖|𝜆
𝑁
𝑖=1

=
𝛼𝑡 𝑖 𝛽𝑡 𝑖

 𝛼𝑡 𝑖 𝛽𝑡 𝑖
𝑁
𝑖=1

 

– The individually most likely state 𝑞𝑡
∗ at each time is then 

𝑞𝑡
∗ = arg max

1≤𝑖≤𝑁
𝛾𝑡 𝑖    ∀𝑡 = 1…𝑇  
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– The problem with choosing the individually most likely states is that 
the overall state sequence may not be valid 

• Consider a situation where the individually most likely states are 𝑞𝑡 = 𝑆𝑖  
and 𝑞𝑡+1 = 𝑆𝑗, but the transition probability 𝑎𝑖𝑗 = 0 

 

– Instead, and to avoid this problem, it is common to look for the single 
best state sequence, at the expense of having sub-optimal individual 
states 

– This is accomplished with the Viterbi algorithm 
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• The Viterbi algorithm 
– To find the single best state sequence we define yet another variable  

𝛿𝑡 𝑖 = max
𝑞1𝑞2…𝑞𝑡−1

𝑃 𝑞1𝑞2…𝑞𝑡 = 𝑆𝑖 , 𝑜1𝑜2…𝑜𝑡|𝜆  

• which represents the highest probability along a single path that accounts 
for the first 𝑡 observations and ends at state 𝑆𝑖  

– By induction, 𝛿𝑡+1 𝑗  can be computed as 

𝛿𝑡+1 𝑗 = max
𝑖

𝛿𝑡 𝑖 𝑎𝑖𝑗 𝑏𝑗 𝑜𝑡+1  

– To retrieve the state sequence, we also need to keep track of the state 
that maximizes 𝛿𝑡 𝑖  at each time 𝑡, which is done by constructing an 
array 

Ψ𝑡+1 𝑗 = arg max
1≤𝑖≤𝑁

𝛿𝑡 𝑖 𝑎𝑖𝑗   

• Ψ𝑡+1 𝑗  is the state at time 𝑡 from which a transition to state 𝑆𝑗 maximizes 
the probability 𝛿𝑡+1 𝑗  
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– The Viterbi algorithm for finding the optimal state sequence becomes 

• Initialization:   
𝛿1 𝑖 = 𝜋𝑖𝑏𝑖 𝑜1 1 ≤ 𝑖 ≤ 𝑁

Ψ1 𝑖 = 0 no previous states
 

 

• Recursion:  
𝛿𝑡 𝑗 = max

1≤𝑖≤𝑁 
𝛿𝑡−1 𝑖 𝑎𝑖𝑗 𝑏𝑗 𝑜𝑡

Ψ𝑡 𝑗 = arg max
1≤𝑖≤𝑁

𝛿𝑡−1 𝑖 𝑎𝑖𝑗
 2 ≤ 𝑡 ≤ 𝑇;   1 ≤ 𝑗 ≤ 𝑁 

 

• Termination:   
𝑃∗ = max

1≤𝑖≤𝑁 
𝛿𝑇 𝑖

𝑞𝑇
∗ = arg max

1≤𝑖≤𝑁 
𝛿𝑇 𝑖

 

 

– And the optimal state sequence  
can be retrieved by backtracking 

𝑞𝑡
∗ = Ψ𝑡+1 𝑞𝑡+1

∗    𝑡 = 𝑇 − 1, 𝑇 − 2…1 
 

– Notice that the Viterbi algorithm  
is similar to the Forward procedure,  
except that it uses a maximization  
over previous states instead of a  
summation 

 iδ
t

 jδ
1t 

[Rabiner, 1989] 




