L23: hidden Markov models

Discrete Markov processes

Hidden Markov models

Forward and Backward procedures
The Viterbi algorithm

This lecture is based on [Rabiner and Juang, 1993]
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Introduction

The next two lectures in the course deal with the recognition of
temporal or sequential patterns

— Sequential pattern recognition is a relevant problem in several disciplines
* Human-computer interaction: Speech recognition
* Bioengineering: ECG and EEG analysis
* Robotics: mobile robot navigation
e Bioinformatics: DNA base sequence alignment

A number of approaches can be used to perform time series
analysis
— Tap delay lines can be used to form a feature vector that captures the
behavior of the signal during a fixed time window
* This represents a form of “short-term” memory
* This simple approach is, however, limited by the finite length of the delay line
— Feedback connections can be used to produce recurrent MLP models
* Global feedback allows the model to have “long-term” memory capabilities

* Training and using recurrent networks is, however, rather involved and outside
the scope of this class (refer to [Principe et al., 2000; Haykin, 1999])

— Instead, we will focus on hidden Markov models, a statistical approach
that has become the “gold standard” for time series analysis
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Discrete Markov Processes

Consider a system described by the following process

— At any given time, the system can be in one of N possible states
S = {51,52 SN}

— At regular times, the system undergoes a transition to a new state
— Transition between states can be described probabilistically

Markov property

— In general, the probability that the system is in state q; = §; is a
function of the complete history of the system

— To simplify the analysis, however, we will assume that the state of the
system depends only on its immediate past

P(CIt = Sj|CIt—1 =5, qt—2 = Sk ) = P(Qt = Sj|Qt—1 = Si)
— This is known as a first-order Markov Process

— We will also assume that the transition probability between any two
states is independent of time

ClijZO

aij = P(q; = Silae-1 = Si) S't'{zN La;i =1
j=14%ij
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Example
— Consider a simple three-state Markov model of the weather

— Any given day, the weather can be described as being
» State 1: precipitation (rain or snow)
e State 2: cloudy
* State 3: sunny

— Transitions between states are described by the transition matrix

04 03 0.3
A={a;}=102 06 0.2
0.1 0.1 08
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— Question

e Given that the weather on day t=1 is sunny, what is the probability that
the weather for the next 7 days will be “sun, sun, rain, rain, sun, clouds,
sun” ?

e Answer:

P(S3'S3'53'51)51153152;53|m0del)

— T303304330A130110310A2303>
=1x08x%x08x%x0.1%x04x%x03x0.1x0.2

— Question

* What is the probability that the weather stays in the same known state S,
for exactly T consecutive days?

* Answer:
P(qr = St Qee1 = Si - qQear = Sjzi) = afy "(1 — ay)
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Hidden Markov models

Introduction

— The previous model assumes that each state can be uniquely
associated with an observable event
* Once an observation is made, the state of the system is then trivially
retrieved
* This model, however, is too restrictive to be of practical use for most
realistic problems
— To make the model more flexible, we will assume that the outcomes or
observations of the model are a probabilistic function of each state
e Each state can produce a number of outputs according to a unique

probability distribution, and each distinct output can potentially be
generated at any state

* These are known a Hidden Markov Models (HMM), because the state
seqguence is not directly observable, it can only be approximated from the
sequence of observations produced by the system
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The coin-toss problem
— To illustrate the concept of an HMM, consider the following scenario

* You are placed in a room with a curtain
e Behind the curtain there is a person performing a coin-toss experiment
* This person selects one of several coins, and tosses it: heads (H) or tails (T)
* She tells you the outcome (H,T), but not which coin was used each time
— Your goal is to build a probabilistic model that best explains a
sequence of observations O = {04,0,,05 ...} ={H,T,T,H ...}

* The coins represent the states; these are hidden because you do not
know which coin was tossed each time

* The outcome of each toss represents an observation

* A “likely” sequence of coins may be inferred from the observations, but
this state sequence will not be unique

— |If the coins are hidden, how many states should the HMM have?
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— One-coin model

* |n this case, we assume that the person behind
the curtain only has one coin

* As aresult, the Markov model is observable
since there is only one state

* |n fact, we may describe the system with a
deterministic model where the states are the
actual observations (see figure)

* In either case, the model parameter P(H) may
be found from the ratio of heads and tails

— Two-coin model
* A more sophisticated HMM would be to
assume that there are two coins

— Each coin (state) has its own distribution of
heads and tails, to model the fact that the coins
may be biased

— Transitions between the two states model the
random process used by the person behind the
curtain to select one of the coins

* The model has 4 free parameters
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— Three-coin model
* |n this case, the model would have three
separate states

— This HMM can be interpreted in a similar
fashion as the two-coin model

* The model has 9 free parameters

— Which of these models is best?

* Since the states are not observable, the best
we can do is select the model that best
explains the data (e.g., using a Maximum
Likelihood criterion)

 Whether the observation sequence is long
and rich enough to warrant a more complex
model is a different story, though
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The urn-ball problem

— To further illustrate the concept of an HMM, consider this scenario

You are placed in the same room with a curtain

Behind the curtain there are N urns, each containing a large number of
balls from M different colors

The person behind the curtain selects an urn according to an internal
random process, then randomly grabs a ball from the selected urn

He shows you the ball, and places it back in the urn
This process is repeated over and over

— Questions

How would you represent this experiment with an HMM? What are the
states? Why are the states hidden? What are the observations?
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Elements of an HMM

— An HMM is characterized by the following set of parameters
N, the number of states in the model S = {5, 5, ...Sy}
M, the number of discrete observation symbols V = {v,, v, ... vy}

A= {aij}, the state transition probability
a;j = P(qes1 = Silqc = Si)
B = {bj (k)}, the observation or emission probability distribution
bi(k) = P(or = vilq, = Sj)
1, the initial state distribution
nj=P(q = 5)
— Therefore, an HMM is specified by two scalars (N and M) and three
probability distributions (A4,B, and m)

* In what follows, we will represent an HMM by the compact notation
A= (4,B,m)
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HMM generation of observation sequences
— Given a completely specified HMM A = (4, B, ), how can an
observation sequence O = {04, 0,, 03,0,, ... } be generated?
1. Choose an initial state S; according to the initial state distribution
2. Sett =1
3. Generate observation o, according to the emission probability b;(k)

4. Move to a new state S, 1according to state-transition at that state a;;

5. Sett=t+1andreturnto3 untilt > T

— Example

* Generate an observation sequence with T = 5 for a coin tossing
experiment with three coins and the following probabilities

S1 S22 53 1 1
P(H) 05 0.75 0.25 A={aij}=§‘v'i,j = {m} =3 Vi
P(T) 05 025 0.75
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The three basic HMM problems

— Problem 1: Probability Evaluation

 Given observation sequence O = {04, 05,05 ... } and model A = {4, B, i},
how do we efficiently compute P(0|A), the likelihood of the observation
sequence given the model?

— The solution is given by the Forward and Backward procedures
— Problem 2: Optimal State Sequence

* Given observation sequence O = {04, 05, 03 ... } and model 4, how do we
choose a state sequence Q = {q4, g, g5 ... } that is optimal (i.e., best
explains the data)?

— The solution is provided by the Viterbi algorithm
— Problem 3: Parameter Estimation

* How do we adjust the parameters of the model A = {4, B, m} to maximize
the likelihood P(0|4)

— The solution is given by the Baum-Welch re-estimation procedure
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Forward and Backward procedures

Problem 1: Probability Evaluation

— Our goal is to compute the likelihood of an observation sequence
O = {04, 0,, 053 ... } given a particular HMM model A = {4, B, it}

— Computation of this probability involves enumerating every possible
state sequence and evaluating the corresponding probability

P(0I1) = ) P(010. HP(QIN)
vaQ

— For a particular state sequence Q = {q1,9,,95 ... }, P(0]|Q, 1) is
T T

P(0]Q,2) = P(o¢lq:, A) = bqt(ot)

— The probability of the state sequence Q is
P(Qll) — 7T%ach%a'%qs aCIT—lQT

— Merging these results, we obtain

P(0O|2) = z nCIleI1(OQ1) anQZbQZ(OQZ) "'aQT—1QTbQT(OCIT)
q1.92---91
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— Computational complexity
« With NTpossible state sequences, this approach becomes unfeasible
even for small problems... sound familiar?
— For N =5and T = 100, the order of computations is in the order of 1072
* Fortunately, the computation of P(0|A) has a lattice (or trellis) structure,

which lends itself to a very efficient implementation known as the
Forward procedure

STATE
|

[Rabiner, 1989] g

l | | ]
1 2 3 T

OBSERVATION,
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The Forward procedure

— Consider the following variable a; (i) defined as

a;(i) = P(01,0; ... 01, qr = Si|A)

* which represents the probability of the observation sequence up to time ¢t

AND the state S; at time t, given model A

— Computation of this variable can be efficiently performed by induction

* Initialization:  «a,(i) = m;b;(0;)

* Induction: a1 () = [Z?]:l at(i)aij]bj(0t+1) {

 Termination: P(0|1) = Y, ar(i)

* As a result, computation of P(0|A) can be

1<t<T-1
1<j<N

reduced from 2T X NT down to N2 X T
operations (from 1072 to 3000
forN =5,T =100)

a, (i)
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The Backward procedure

— Analogously, consider the backward variable f;(i) defined as
B (i) = P(0¢41,0t42 - 07|qr = S, A)

— B:(i) represents the probability of the partial observation sequence
from t + 1 to the end, given state S; at time t and model A
* As before, 5;(i) can be computed through induction
* Initialization:  [;(i) = 1 (arbitrarily)
i . . t=T-1,T—-2..1
* Induction: Be(D) = 9/:1 a;;bj(0r+1)Be+1 () { 1<i<N

— Similarly, this computation can be
effectively performed in the order
of N? X T operations

t+1

[Rabiner, 1989] By 4+4ti}
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The Viterbi algorithm

Problem 2: Optimal State Sequence

— Finding the optimal state sequence is more difficult problem that the
estimation of P(0|A)
— Part of the issue has to do with defining an optimality measure, since
several criteria are possible
* Finding the states g;that are individually more likely at each time t
* Finding the single best state sequence path (i.e., maximize the posterior
P(01Q,2)
— The second criterion is the most widely used, and leads to the well-
known Viterbi algorithm

* However, we first optimize the first criterion as it allows us to define a
variable that will be used later in the solution of Problem 3
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— As in the Forward-Backward procedures, we define a variable y; (i)
ye (@) = P(q; = S;]0, 1)
* which represents the probability of being in state S; at time t, given the
observation sequence O and model A

— Using the definition of conditional probability, we can write
ye(@) = P(q = S$;|0, 1) = g l = ' l

P(011) X, P(0,q; = Si|D)
— Now, the numerator of y,(i) is equal to the product of a;(i) and S:(i)
P(0,q; = 5;|1) a: (1) (i)

ve() = N P0,q. =Si1D) IV, a, (DB (D)

— The individually most likely state g; at each time is then

qi = argmax[y,(i)] vt=1..T
1<i<N
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— The problem with choosing the individually most likely states is that
the overall state sequence may not be valid

* Consider a situation where the individually most likely states are q; = S;
and q¢4q = Sj, but the transition probability a;; = 0

— Instead, and to avoid this problem, it is common to look for the single
best state sequence, at the expense of having sub-optimal individual

states
— This is accomplished with the Viterbi algorithm
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The Viterbi algorithm
— To find the single best state sequence we define yet another variable

6:;(i) = max P(q19;y...q; = S;, 0105 ...0¢|A)

4192 ---9t—1

* which represents the highest probability along a single path that accounts
for the first t observations and ends at state §;

— By induction, é;,1(j) can be computed as
6:+1() = miax[5t(i)aij]bj(ot+1)
— To retrieve the state sequence, we also need to keep track of the state
that maximizes 6,(i) at each time t, which is done by constructing an

array

Weir () = arg m}\?x[&(i)aij]
<I<

* W, ,(j) is the state at time t from which a transition to state S; maximizes
the probability 6,1 (j)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 21



Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Most likely state sequence

8 9 10 Time
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— The Viterbi algorithm for finding the optimal state sequence becomes

* Initialization: . :
Y, (i) =0 (no previous states)

6:(j) = 12.2% [5t—1(i)aij]bj (0¢)

Y. (j) = arg _maX[5t_1(i)aij]
1<isN

* Recursion: 2<t<T; 1<j<N

P* = max [67 ()]

r = arg max|[67(i)]

* Termination: {q
1<i<N

— And the optimal state sequence
can be retrieved by backtracking

q; = W¥e1(qi) t=T—-1,T—-2..1

— Notice that the Viterbi algorithm
is similar to the Forward procedure,
except that it uses a maximization
over previous states instead of a
summation

[Rabiner, 1989]
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