Lecture 10: Density estimation II

- Parzen windows
- Smooth kernels
- Bandwidth selection for univariate data
- Multivariate density estimation
- Product kernels
- Naïve Bayes classifier
KDE: Parzen windows (1)

- In the previous lecture we found out that the non-parametric density estimate was

\[P(x) = \frac{k}{NV} \]

where

- \(V \) is the volume surrounding \(x \)
- \(N \) is the total number of examples
- \(k \) is the number of examples inside \(V \)

- Suppose that the region \(\mathcal{R} \) that encloses the \(k \) examples is a hypercube with sides of length \(h \) centered at the estimation point \(x \)
 - Then its volume is given by \(V = h^D \), where \(D \) is the number of dimensions
- To find the number of examples that fall within this region we define a kernel function \(K(u) \)

\[K(u) = \begin{cases}
1 & |u_j| < 1/2 \quad j = 1, \ldots, D \\
0 & \text{otherwise}
\end{cases} \]

- This kernel, which corresponds to a unit hypercube centered at the origin, is known as a Parzen window or the naïve estimator
- The total number of points inside the hypercube is then

\[k = \sum_{n=1}^{N} K\left(\frac{x - x^{(n)}}{h} \right) \]

- \(K((x-x^{(n)})/h) \) is equal to unity if and only if the point \(x^{(n)} \) falls inside a hypercube of side \(h \) centered at \(x \)
- Substituting back into the expression for the density estimate

\[P_{\text{KDE}}(x) = \frac{1}{Nh^D} \sum_{n=1}^{N} K\left(\frac{x - x^{(n)}}{h} \right) \]

- Notice that the Parzen window density estimate resembles the histogram, except that the cell locations are determined by the data points
KDE: Parzen windows (2)

- To understand the role of the kernel function we compute the expectation of the probability estimate $P(x)$

$$E[P_{KDE}(x)] = \frac{1}{Nh^D} \sum_{n=1}^{N} E\left[K\left(\frac{x - x^{(n)}}{h} \right) \right] =$$

$$= \frac{1}{h^D} E\left[K\left(\frac{x - x^{(n)}}{h} \right) \right] =$$

$$= \frac{1}{h^D} \int K\left(\frac{x - x'}{h} \right) P(x') dx'$$

- where we have assumed that the vectors $x^{(n)}$ are drawn independently from the true density $P(x)$

- We can see that the expectation of the estimated density $P_{KDE}(x)$ is a convolution of the true density $P(x)$ with the kernel function
 - The width w of the kernel plays the role of a smoothing parameter: the wider the kernel function, the smoother the estimate $P_{KDE}(x)$

- For $h \to 0$, the kernel approaches a delta function and $P_{KDE}(x)$ approaches the true density
 - However, in practice we have a finite number of points, so h cannot be made arbitrarily small, since the density estimate $P_{KDE}(x)$ approaches a set of delta functions centered at the data points
KDE: smooth kernels

- **The Parzen window has several drawbacks**
 - Yields density estimates that have discontinuities
 - Weights equally all the points x_i, regardless of their distance to the estimation point x

- **It is easy to to overcome some of these difficulties by generalizing the Parzen window with a smooth kernel function $K(u)$ which satisfies the condition**

$$\int_{\mathbb{R}^D} K(x) dx = 1$$

- Usually, but not not always, $K(u)$ will be a radially symmetric, unimodal probability density function, such as the multivariate Gaussian density function

$$K(x) = \frac{1}{(2\pi)^{D/2}} \exp \left(-\frac{1}{2} x^T x \right)$$

- where the expression of the density estimate remains the same as with Parzen windows

$$P_{KDE}(x) = \frac{1}{Nh^D} \sum_{n=1}^{N} K \left(\frac{x - x^{(n)}}{h} \right)$$

- **Just as the Parzen window estimate can be considered a sum of boxes centered at the observations, the smooth kernel estimate is a sum of “bumps” placed at the observations**
 - The kernel function determines the shape of the bumps
 - The parameter h, also called the **smoothing parameter** or **bandwidth**, determines their width
Choosing the bandwidth: univariate case (1)

The problem of choosing the bandwidth is crucial in density estimation

- A large bandwidth will over-smooth the density and mask the structure in the data
- A small bandwidth will yield a density estimate that is spiky and very hard to interpret
Choosing the bandwidth: univariate case (2)

- We would like to find a value of the smoothing parameter that minimizes the error between the estimated density and the true density
 - A natural measure is the mean square error at the estimation point x, defined by
 \[\text{MSE}_x(P_{KDE}) = \mathbb{E}[(P_{KDE}(x) - P(x))^2] = \mathbb{E}[P_{KDE}(x) - P(x)]^2 + \text{var}(P_{KDE}(x)) \]
- This expression is an example of the bias-variance dilemma of statistics: the bias can be reduced at the expense of the variance, and vice versa
 - The bias of an estimate is the systematic error incurred in the estimation
 - The variance of an estimate is the random error incurred in the estimation
- The bias-variance dilemma applied to bandwidth selection simply means that
 - A large bandwidth will reduce the differences among the estimates of $P_{KDE}(x)$ for different data sets (the variance) but it will increase the bias of $P_{KDE}(x)$ with respect to the true density $P(x)$
 - A small bandwidth will reduce the bias of $P_{KDE}(x)$, at the expense of a larger variance in the estimates $P_{KDE}(x)$

![Bias-Variance Diagram](image-url)
Bandwidth selection methods, univariate case (1)

- **Subjective choice**
 - The natural way for choosing the smoothing parameter is to plot out several curves and choose the estimate that is most in accordance with one’s prior (subjective) ideas.
 - However, this method is not practical in pattern recognition since we typically have high-dimensional data.

- **Reference to a standard distribution**
 - Assume a standard density function and find the value of the bandwidth that minimizes the integral of the square error (MISE):
 \[
 h_{opt} = \arg\min_h \{MISE(P_{KDE}(x))\} = \arg\min_h \{E\left[\int (P_{KDE}(x) - P(x))^2 dx\right]\}
 \]
 - If we assume that the true distribution is a Gaussian density and we use a Gaussian kernel, it can be shown that the optimal value of the bandwidth becomes [Silverman]
 \[
 h_{opt} = 1.06\sigma N^{-1/5}
 \]
 - where \(\sigma\) is the sample variance and \(N\) is the number of training examples.
Bandwidth selection methods, univariate case

- Better results can be obtained if we use a robust measure of the spread instead of the sample variance and we reduce the coefficient 1.06 to better cope with multimodal densities [Silverman]. With this in mind, the optimal bandwidth becomes

\[h_{\text{opt}} = 0.9A N^{-1/5} \quad \text{where} \quad A = \min \left(\sigma, \frac{\text{IQR}}{1.34} \right) \]

- IQR is the interquartile range, a robust estimate of the spread. It is computed as one half the difference between the 75th percentile (Q3) and the 25th percentile (Q1). The formula for semi-interquartile range is therefore: (Q3-Q1)/2

- A percentile rank is the proportion of examples in a distribution that a specific example is greater than or equal to

- **Likelihood cross-validation**
 - The ML estimate of \(h \) is degenerate since it yields \(h_{\text{ML}} = 0 \), a density estimate with delta functions at each training data point
 - An practical alternative is to maximize the “pseudo-likelihood” computed using cross-validation

\[h_{\text{MLCV}} = \arg \max_{h} \left\{ \frac{1}{N} \sum_{n=1}^{N} \log f(x^{(n)}) \right\} \]

where

\[f(x^{(m)}) = \frac{1}{(N-1)h} \sum_{n=1,n\neq m}^{N} K \left(\frac{x^{(m)} - x^{(n)}}{h} \right) \]
Multivariate density estimation

- The derived expression of the estimate $P_{\text{KDE}}(x)$ for multiple dimensions was

$$P_{\text{KDE}}(x) = \frac{1}{Nh^D} \sum_{n=1}^{N} K \left(\frac{x - x^n}{h} \right)$$

 - Notice that the bandwidth h is the same for all the axes, so this density estimate will be weight all the axis equally

- However, if the spread of the data is much greater in one of the coordinate directions than the others, we should use a vector of smoothing parameters or even a full covariance matrix, which complicates the procedure

- There are two basic alternatives to solve the scaling problem without having to use a more general kernel density estimate
 - **Pre-scale each axis** (normalize to unit variance, for instance)
 - **Pre-whiten the data** (linearly transform to have unit covariance matrix), estimate the density, and then transform back [Fukunaga]
 - The whitening transform is simply $y = \Lambda^{-1/2} M^T x$,
 where Λ and M are the eigenvalue and eigenvector matrices of the sample covariance of x
 - Fukunaga’s method is equivalent to using a hyper-ellipsoidal kernel
Product kernels

- A very common method of performing multivariate density estimation is the product kernel, defined as

\[P_{PKDE}(x) = \frac{1}{N} \sum_{i=1}^{N} K(x, x^{(n)}, h_1, \ldots, h_D) \]

where

\[K(x, x^{(n)}, h_1, \ldots, h_D) = \frac{1}{h_1 \cdots h_D} \prod_{d=1}^{D} K_d \left(\frac{x(d) - x^{(n)}(d)}{h_d} \right) \]

- The product kernel consists of the product of one-dimensional kernels

- Typically the same kernel function is used in each dimension (\(K_d(x) = K(x) \)), and only the bandwidths are allowed to differ
 - Bandwidth selection can then be performed with any of the methods presented for univariate density estimation

- It is important to notice that although the expression of \(K(x, x^{(n)}, h_1, \ldots, h_D) \) uses kernel independence, this does not imply that any type of feature independence is being assumed
 - A density estimation method that assumed feature independence would have the following expression

\[P_{FEAT-IND}(x) = \prod_{d=1}^{D} \left(\frac{1}{Nh_d} \sum_{i=1}^{N} K_d \left(\frac{x(d) - x^{(n)}(d)}{h_d} \right) \right) \]

- Notice how the order of the summation and product are reversed compared to the product kernel
This example shows the product kernel density estimate of a bivariate unimodal Gaussian distribution:

- 100 data points were drawn from the distribution.
- The figures show the true density (left) and the estimates using $h=1.06\sigma N^{-1/5}$ (middle) and $h=0.9\sigma N^{-1/5}$ (right).
This example shows the product kernel density estimate of a bivariate bimodal Gaussian distribution

- 100 data points were drawn from the distribution
- The figures show the true density (left) and the estimates using $h=1.06\sigma N^{-1/5}$ (middle) and $h=0.9AN^{-1/5}$ (right)
Naïve Bayes classifier

- Recall that the Bayes classifier is given by the following family of discriminant functions:

 \[
 g_i(x) = \begin{cases}
 \omega_i & \text{if } g_i(x) > g_j(x) \ \forall j \neq i \\
 \omega_j & \text{otherwise}
 \end{cases}
 \]

 where \(g_i(x) = P(\omega_i | x) \)

- Using Bayes rule, these discriminant functions can be expressed as:

 \[
 g_i(x) = P(\omega_i | x) = P(x | \omega_i)P(\omega_i)
 \]

- where \(P(\omega) \) is our prior knowledge and \(P(x|\omega) \) is obtained through density estimation

- Although we have presented density estimation methods that allow us to estimate the multivariate likelihood \(P(x|\omega) \), the curse of dimensionality still poses problems

- One highly practical simplification of the Bayes classifier is the so-called Naïve Bayes classifier:

 - The Naïve Bayes classifier makes the assumption that the features are class-conditionally independent:

 \[
 P(x | \omega_i) = \prod_{d=1}^{D} P(x(d) | \omega_i)
 \]

 - It is important to notice that this assumption is not as rigid as assuming independent features \(P(x) = \prod_{d=1}^{D} P(x(d)) \)

 - Merging this expression into the discriminant function yields the decision rule for the Naïve Bayes classifier:

 \[
 g_{NB}(x) = P(\omega_i) \prod_{d=1}^{D} P(x(d) | \omega_i)
 \]

- The main advantage of the Naïve Bayes classifier is that we only need to compute the univariate densities \(P(x(d)|\omega_i) \), which is a much easier problem than estimating the multivariate density \(P(x|\omega_i) \)

 - Despite its simplicity, the Naïve Bayes has been shown to have comparable performance to artificial neural networks and decision tree learning in some domains